Time progression of Bub1 activation in Zebrafish (Branchydanio rerio) during egg maturation

Julie P. Swinson
University of Puget Sound

Follow this and additional works at: http://soundideas.pugetsound.edu/summer_research

Recommended Citation
Swinson, Julie P., "Time progression of Bub1 activation in Zebrafish (Branchydanio rerio) during egg maturation" (2010). Summer Research. Paper 12.
http://soundideas.pugetsound.edu/summer_research/12

This Presentation is brought to you for free and open access by Sound Ideas. It has been accepted for inclusion in Summer Research by an authorized administrator of Sound Ideas. For more information, please contact soundideas@pugetsound.edu.
Time progression of Bub1 activation in Zebrafish (Branchydanio rerio) during egg maturation

Julie Swinson
Advisor: Dr. Alyce DeMarais
University of Puget Sound, Tacoma, WA 98416

Introduction

• The spindle assembly checkpoint, occurring before the second metaphase of meiosis, allows the cell undergoing cell division to check for DNA mutations and check cohesion between the kinetochore and meiotic spindle.1
• In Zebrafish egg maturation is triggered by the hormone progesterone, and several genes and proteins known as cytostatic factors (CSF).2
• Resumption of meiosis is important for successful reduction of chromosomes prior to fertilization.
• CSFs are responsible for the inhibition of meiosis at the spindle assembly checkpoints; 6 genes are involved in the checkpoint; mad1, mad2, mad3, bub1, bub3, and mps1.2
• The CSF proteins are thought to be part of the MAP-K regulated pathway.3
• Bub1 is essential for activating the spindle assembly checkpoint to assure that the cohesion between kinetochore and the meiotic spindles is strong.4
• In studies where bub1 has been inactivated the separation of chromosomes is a mess and shortly after the cell cycle arrests.5

Materials and Methods

• Follicle cell enclosed oocytes were collected from Zebrafish and treated with progesterone (P4) in ethanol or ethanol only (control)
• Oocytes were incubated at 26°C in 60% L-15 medium for various times from 0 hours to 12 hours
• Oocytes were removed from the culture medium and frozen. The sample was then lysed and processed through a series of centrifugations to collect the total RNA using a QIAGEN RNaseasy mini kit
• Isolated RNA was reverse transcribed into the complementary DNA using the QIAGEN OneStep RT-PCR kit. This was done using random DNA primers in the reverse transcriptase buffer. The cDNA will be subjected to PCR using primers specific for the bub1 and EF1α sequences
• The products of the RT-PCR reaction were run through a 1% agarose gel made with ethidium bromide for staining the DNA. The results were visualized under UV light
• Densities of the resulting bands were determined using the Image J software. Relative amounts of bub1 transcript were then statistically analyzed to determine the amounts of bub1 in response to progesterone during oocyte maturation
• All experiments were repeated in triplicate.

Results

Figure 2. Expression of bub1 in progesterone treated oocytes increases initially by hour 1, but decreases by hour 3. Expression of EF1α is constant between oocytes treated with progesterone and no hormone

Figure 3. Expression of bub1 increases from hours 6 to 12. Expression of EF1α is constant between oocytes treated with progesterone and no hormone

Figure 4. Bub1 expression in hormone treated oocytes. Bub1 expression initially increases, then decreases by hour 3, followed by an increase in expression over time after progesterone treatment.

Conclusions

• Bub1 expression increases in Zebrafish follicle-cell enclosed oocytes shortly after progesterone stimulation, followed by a decrease in expression 3 hours after treatment.
• Bub1 expression increases constantly after three hours of treatment with progesterone.
• Bub1 plays an important role in oocyte maturation in Zebrafish during the resumption of meiosis

Future Research

• Explore possible explanations for decrease in bub1 RNA expression 3 hours after treatment with progesterone
• Explore possible differences in bub1 activation between live-bearing fish and egg-bearing fish
• Examine gene activation of other cytostatic factors, such as Sgo1, which is closely associated with bub1 and the cohesion between the kinetochores and spindle
• Identify if bub1 is activated in the egg and/or the follicle cells of Zebrafish oocytes

Acknowledgments

University of Puget Sound Biology Department
Dr. Alyce DeMarais
Dr. Mark Martin
Michal Morrison-Kerr
Mandi Wood and Min Lee

References