
University of Puget Sound
Sound Ideas

Summer Research

2010

Reverse-Engineering Linear Algebra
Billy Wonderly
University of Puget Sound

Follow this and additional works at: http://soundideas.pugetsound.edu/summer_research

This Presentation is brought to you for free and open access by Sound Ideas. It has been accepted for inclusion in Summer Research by an authorized
administrator of Sound Ideas. For more information, please contact soundideas@pugetsound.edu.

Recommended Citation
Wonderly, Billy, "Reverse-Engineering Linear Algebra" (2010). Summer Research. Paper 46.
http://soundideas.pugetsound.edu/summer_research/46

http://soundideas.pugetsound.edu?utm_source=soundideas.pugetsound.edu%2Fsummer_research%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://soundideas.pugetsound.edu/summer_research?utm_source=soundideas.pugetsound.edu%2Fsummer_research%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://soundideas.pugetsound.edu/summer_research?utm_source=soundideas.pugetsound.edu%2Fsummer_research%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://soundideas.pugetsound.edu/summer_research/46?utm_source=soundideas.pugetsound.edu%2Fsummer_research%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:soundideas@pugetsound.edu


Reverse-Engineering Linear Algebra
Billy Wonderly

Department of Mathematics and Computer Science
University of Puget Sound

Introduction

The problem of generating matrices with desirable properties is a difficult
one. These matrices are sought after for a variety of reasons, one being
students looking for practice in mastering the skills they need to succeed
in Linear Algebra. A solution to this problem is to do Linear Algebra in
reverse. Theorems and procedures used to produce answers from ques-
tions can often in effect be ’undone’, meaning that we can use a solution
with specific properties, to produce a problem whose answer will retain
those properties. This idea was put in motion by developing and modify-
ing Sage, open source mathematics software.

1. Generating Solutions

In reverse engineering problems the first and most important step is find-
ing the ideal solution. In general, solutions in linear algebra are extracted
from the reduced row-echelon form of a matrix. The function created al-
lows for inputs of number of rows, columns, and pivot columns for a matrix.

row=4
col=5
rank=3





=⇒





1 0 5 0 4
0 1 −3 0 2
0 0 0 1 2
0 0 0 0 0





•Matrices are in reduced row-echelon form.
•Output matrices have only integer entries.
• Leading one’s are placed skewed to the left side of the matrix.
•Matrices can be generated over a variety of finite algebraic rings.

2. Matrices with nice Echelon Forms

Another In order to get a matrix into rref, if not careful, the computations
necessary can produce very ugly and hard to work with fractions. A ma-
trix with a desirable reduced row-echelon form is achieved by ’reversing’
an algorithm to put a matrix in reduced row-echelon form.

A =





1 0 5 0 4
0 1 −3 0 2
0 0 0 1 2
0 0 0 0 0





Reverse RREF−−−−−−−−→





−1 −6 23 −8 −24
−1 6 −23 10 −28
2 −9 37 −16 −42
0 1 −3 −1 0





RREF−−−→





1 0 5 0 4
0 1 −3 0 2
0 0 0 1 2
0 0 0 0 0




= A

•Uses the output of the routine 1.
•Reverses the rref process by randomly performing addition

of the scalar multiple of one row to another row of the matrix.
•Has an additional entry size control feature because a large

number of scalar row multiples of rows being added together
can make entry sizes very large and unmanageable.

•Matrices can be generated over a variety of finite algebraic
rings.

3. Unimodular Matrices

Unimodular matrices are nonsingular and have the special
property that their determinant is one. This makes many com-
putations turn out very nicely.

A =





−3 −15 4 4
−3 −11 4 3
−5 −24 2 19
−4 −19 5 6





det(A) = 1

•This funcion is essentially is the a specific case of the rou-
tine 2 where the input is a square, full rank, matrix.

•Because 2 only uses scalar row addition, even after a large
number of row operations, the determinant remains un-
changed.

•The series of row operations is performed on the identity
matrix, which has determinant one.

•Unimodular matrices are useful because a unimodular ma-
trix that contains only integer entries will have an inverse
containing only integer entries.

•Multiplying a matrix B by a unimodular matrix U results in
hiding a problem, and can be easily undone bye multiplying
the resulting matrix by U−1

4. Random Four Subspaces Routine

The Four Subspaces routine utilizes the 1 and 2 routines to
produce matrices whose extended echelon form is ’nice’.

B =





1 0 0 3 1
0 1 0 −1 −2
0 0 1 3 2
0 0 0 0 0





K =





1 10 −47
−1 3 −15
0 4 −19





L =
[
1 −4 −2 0

]






=⇒





1 0 5 0 4 0 1 10 -47
0 1 -3 0 2 0 -1 3 -15
0 0 0 1 2 0 0 4 -19
0 0 0 0 0 1 -4 -2 0





•All submatrices contain only integer entries.
•The B and L matrices are generated by the 1 routine, and

the K matrix is called from the 3 routine. These matrices are
then pushed together to produce the solution.

•The matrix formed by stacking K and L is created to be uni-
modular because its inverse is multiplied on the left side of
B. This matrix product is the output of the routine.

5. Eigenspaces

The final routine generates a diagonalizable matrix whose
eigenspaces have nice basis vectors if computed by hand. In-
puts of matrix size, eigenvalues, and associated eigenspace
dimensions are allowable.

size=4
eigenvalues=[-2,1,4]
dimensions=[1,1,2]





=⇒ A =





−20 18 −36 −18
−6 16 6 18
12 −3 34 27
−6 −3 −24 −23





Characteristic polynomial: pA(x) = (x + 2)(x− 1)(x− 4)2

Matrix of eigenvectors: S =





4 −6 −3 −3
1 −4 −2 −3
−2 1 1 0
1 1 0 1





Giving: S−1AS = D =





−2 0 0 0
0 1 0 0
0 0 4 0
0 0 0 4





•Built by reversing the similarity transformation D = S−1AS to
give SDS−1 = A

•Eigenvectors are given a nice pattern of zeros and ones to
show linear independence.

•Matrices built from eigenvectors are determinant one to en-
sure all matrix inverses and products of matrix multiplication
contain only integers.

•To preserve determinant one, the matrix of eigenvectors was
build from the identity matrix using addition of both column
and row multiples.

•Matrices with complex eigenvalues cannot be produced.
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