Symmetry Methods and Self-Similar Solutions to Curve Shortening

Peter Geertz-Larson
pgeertzlarson@pugetsound.edu

Follow this and additional works at: http://soundideas.pugetsound.edu/summer_research

Recommended Citation
http://soundideas.pugetsound.edu/summer_research/142

This Article is brought to you for free and open access by Sound Ideas. It has been accepted for inclusion in Summer Research by an authorized administrator of Sound Ideas. For more information, please contact soundideas@pugetsound.edu.
Symmetry Methods and Self-Similar Solutions to Curve Shortening

Peter Geertz-Larson
Mathematics and Computer Science, University of Puget Sound
pggeertzlarson@pugetsound.edu

Abstract

Curve shortening is a geometric process that continually evolves a curve based on its curvature. Self-similar solutions to the curve shortening equation maintain their form throughout the process, though they can be scaled, translated, or rotated. These self-similar solutions correspond to the invariant solutions of the symmetry method for solving differential equations.

1. Symmetry Methods

Symmetry methods are a technique for solving differential equations.

- A symmetry for a differential equation maps solutions to solutions, for example by scaling or translating.
- The goal is to use a symmetry to turn the differential equation into a form that is easier to solve by normal methods (e.g., separation of variables).
- Symmetries exist in one-parameter families that produce flows where solutions are continuously mapped to solutions (as the value of the parameter changes).
- Example [3]: The scaling transformation $(x, y) \rightarrow \left(\alpha^2 x, \alpha^2 y\right)$ is a symmetry flow for the differential equation $\frac{dy}{dx} = y^2 + 2y + 1$.

The green flow lines show the change in the blue solutions as α changes. Two invariant solutions are shown in red.

- An invariant solution to a differential equation is one that is mapped to itself in the symmetry, i.e., it is invariant in the symmetry.
- In order to find invariant solutions to a symmetry, we use what are called canonical coordinates. Converting to canonical coordinates results in an equation that is much easier analyze and if we’re lucky, solve.
- Once a solution is found for the transformed equation, we can easily transform back to the original coordinates using the definitions for our canonical coordinates.

2. Symmetry Generators

- Symmetries can be expressed in one of two ways:
 - as (ξ, η) given as functions of the old coordinates (x, y) and a parameter ϵ.
 - as a symmetry generator $X = \partial_x + \eta(x, y)\partial_y$ where ξ and η are functions of x and y defined by
 \[\frac{\partial}{\partial x} = \xi(x, y)\frac{\partial}{\partial x} + \eta(x, y)\frac{\partial}{\partial y}. \]
- All symmetries for a differential equation, $\frac{dy}{dx} = \omega(x, y)$ must satisfy what is known as the symmetry condition
 - The full symmetry condition is used with functions ξ and η defined by
 \[\frac{\partial}{\partial x} = \xi(x, y)\frac{\partial}{\partial x} + \eta(x, y)\frac{\partial}{\partial y}. \]
- For symmetry generators, we linearize this condition around $x = 0$.
- In order to find symmetries, we use the linearized condition because the linear equations that result are typically easier to solve.

3. Curve Shortening

- Curve shortening is a geometric evolution that when given a curve, the curve continually evolves based on the curvature [2].

4. Curve Shortening for the Graph of a Function

- As shown in [1], the first option of looking directly at the curve as the graph of a function $u(x)$ results in the differential equation $\frac{d\bar{u}}{d\bar{x}} = \frac{1}{1 + \bar{u}^2}$.

5. Curve Shortening Applied to the Curve

- For the curve shortening system, our independent variables are time t and the arbitrary parameter μ. The dependent variables are the curvature k and $x = \frac{1}{\sqrt{1 + k^2}}$.
- We are able to reduce the following system of differential equations from the original curve shortening equation:
 \[\frac{dk}{dt} = \frac{2k}{\sqrt{1 + k^2}} \frac{1}{\sqrt{1 + k^2}} \frac{dy}{dx} + k^2 \]
- From the linearized symmetry condition, we get a system of 31 determining equations.
- From this system, we are able to deduce:
 \[\xi = C(p), \quad \tau = -2\sqrt{p} \chi, \quad \chi = c_1 \chi, \quad \text{and} \quad \eta = c_2 C(p) + c_1 \]
 where c_1 and c_2 are constants and C is any differentiable function.
- The above generator describes all possible symmetries for our system, so the next step was to find invariant solutions for particular generators. The generator that we analyzed was $X = p \partial_p + 2h \partial_h$, where h is the vector valued function for the curve.
- This generator results in the canonical coordinates $\tau = \frac{1}{\sqrt{1 + h^2}} \left(\frac{2\sqrt{p}}{\sqrt{1 + h^2}} + \frac{1}{2} h^2\right)$.
- Once completely converted to canonical coordinates, the system turns into the following:
 \[G' = \frac{1 + h^2}{1 + h^2} \]
 \[H' = \frac{1}{1 + h^2} \frac{1}{1 + h^2} \left(2h \partial_h + 4h \partial_h + 4h \partial_h \right) \]
- Though made difficult with the factor of τ^{-1}, the next step would be to analyze these equations. However, this was beyond the scope of this project for the summer.

References