EEG study of perceptual bias in facial expressions, mood, and the mirror-neuron system

Laurel Olfson
lolfson@pugetsound.edu

Follow this and additional works at: http://soundideas.pugetsound.edu/summer_research

Recommended Citation
http://soundideas.pugetsound.edu/summer_research/222

This Article is brought to you for free and open access by Sound Ideas. It has been accepted for inclusion in Summer Research by an authorized administrator of Sound Ideas. For more information, please contact soundideas@pugetsound.edu.
Introduction

- Recent studies suggest the mood-congruency perceptual biases, that mood may alter our perceptions to interpret the world in a manner consistent with our mood (e.g. Lopez-Duran, Kuhlman, George, & Kovacs, 2013; Qin, 2012).
- Individuals in a somewhat depressed mood (but not clinically depressed) rated happy and neutral faces as having a lower intensity compared with individuals not in a happier mood (Qin, 2012).
- One explanation for the interaction between mood and perception of facial expressions may be empathy, or the ability to experience the emotions and feelings of another.
- The human mirror neuron system (MNS) may be an important brain system underlying social cognition abilities such as empathy (e.g. Carr, Iacoboni, Dubeau, Mazziotta, & Lenzi, 2003; Montgomery & Haxby, 2008).
- Prior research has shown the increased MNS activity is correlated with suppression of a particular waveform called the mu-wave. Thus, we measured mu-wave suppression as an indicator of MNS activity.
- The potential link between the human MNS and differential perception of facial expressions given normal variations in mood is unknown.

Subjects

- Results include 8 student subjects from the University of Puget Sound.

Task

- Participants filled out several questionnaires assessing their current mood.
- Participants then viewed faces via a computer monitor and indicated by pressing the keyboard whether they believed the face to be happy or sad while brain activity was measured via EEG.

Stimuli

- Happy and sad faces were morphed using Fantomorph software.
- The neutral, or ambiguous, faces were chosen by a selection of individuals not participating in the study. This face was not always the halfway point in the morph sequence.

Mood Assessment

- **Daily Life Questionnaire**
 - Schraufnagl, Blumenfeld, & Einstein, 2012)
- **Mood Questionnaire**
 - Kolin, Skolnick, (2009)
- **Positive and Negative Aspect Scale**
 - Watson, Clark, & Tellegen, (1988)
- **Analysis**: Scores from the three questionnaires were summed. Higher scores indicated a happier mood, lower scores a sadder mood.
 - A median split was used to create the ‘Positive’ and ‘Negative’ mood groups.

EEG Analysis

- Electrodes were averaged across the entire brain.
- EEG analyzed using fast-Fourier transform to produce spectral density plot.
- Mu-wave power assessed as are under the curve between 8-13 Hz (integral).
- Mu-wave power normed by each subject’s overall average mu-wave power, such that 1.0 is average, >1.0 is increased mu-wave power and <1.0 is suppressed mu-wave power.

Results

- Congruency between stimuli and participant mood causes increased mu-wave suppression.

Conclusions

- **Morph manipulation accurately captured the transition between seeing a face as sad or happy**.
- **Being in a negative mood shifts the curve to the left from those in a positive mood**. Thus, more of the morphed faces were perceived as “Sad” including those well into the “Happy” morphs.
- Reduced mu-wave activity to happy faces for participants in more positive mood.
- Reduced mu-wave activity to sad faces for participants in more negative mood.
- Taken together, results suggest the human mirror neuron system is involved in mood-congruency perceptual effects.

References

Acknowledgments

This research was funded by a AHSS Student Summer Research Grant from the University of Puget Sound.