Entraining Brain Oscillations to Influence Facial Perception

Rosie Irwin
University of Puget Sound, rirwin@pugetsound.edu

Follow this and additional works at: http://soundideas.pugetsound.edu/summer_research

Recommended Citation
http://soundideas.pugetsound.edu/summer_research/247
Entraining Brain Oscillations to Influence Facial Perception
Rosie Irwin and David Andresen
University of Puget Sound, Department of Neuroscience

Introduction

- Brain oscillations are the result of neurons, perhaps in multiple regions of the brain, processing the same stimulus and consequently synchronizing to the same frequency (Hz) (Schnitzler, 2005).
- Using electroencephalography (EEG), brain oscillations have been associated with many different cognitive functions like visual and auditory perception, attention, and emotion processing (Thut & Miniussi, 2009).
- Periodic oscillating stimuli, like face images, can be used to entrain (synchronize) brain oscillations to a set frequency (Rossion & Boremanse, 2011).
- Entrainment influences perception of visual (Mathewson et al., 2012) and auditory (Will & Berg, 2007) stimuli.

Methods

Experimental Setup
- 20 participants were recruited from the University of Puget Sound.
- EEG was used to measure neural activity. For this, subjects were fitted with a 32-channel BioSemi active electrode system, referenced by left and right mastoid electrodes.

Task Specifics
- Face stimuli were obtained from the Radbound Faces Database (Langner et al., 2010). Faces were emotionally neutral, happy, or disgusted (Figure 1).
- Figure 1 depicts the procedure of each trial. Each example demonstrates a possible combination of variables (scramble vs. face, emotion, and timing) for the target image. Figure 2 outlines the possible variable combinations.
- After each trial, subjects indicated if the target image was a scramble or a face and which emotion was expressed using the left and right arrow keys on a QWERTY keyboard.

Data Analysis
- Behavioral effects were assessed by proportion of correct target identifications (face vs. scramble).
- Spectral density plots were generated from EEG data to determine oscillation power of the entrainment frequencies (4 Hz for all stimuli, 2 Hz for faces) across the scalp.
- Information from each electrode was grouped based on the region of the cortex (Figure 3) – occipital, posterior, central, or frontal regions of interest (ROIs) – and the frequencies at which the most power was expressed were identified.

Results

Neural
- All regions of interest (ROIs) showed entrainment (Figure 3).
- Non-occipital ROIs were significantly more entrained to 2 Hz than 4 Hz (p < 0.01).
- The occipital ROI was significantly more entrained to 4 Hz than 2 Hz (p = 0.035).

Behavioral
- Correct identification of faces shown in-phase was significantly higher than correct identification of those shown out-of-phase (p = 0.02) (Figure 4).
- Phase timing had no significant effect on accuracy in identifying a scramble image.
- Proportion correct for scramble targets was significantly higher than for face targets.

Conclusions

- Separate entrainment of the occipital ROI and posterior, central, and frontal ROIs can be achieved with face stimuli.
- Entraining with face stimuli influences the ability of a subject to accurately identify faces shown in-phase versus out-of-phase.
- Subjects were biased towards identifying the target image as a scramble when less certain if the target was a face or a scramble.

Future Directions
- Explore the effect of target emotion on the ability of a subject to discriminate between a face and a scramble.
- Compare correct identification of target emotion (happy vs disgust) between in-phase and out-of-phase target faces.
- Evaluate event-related potentials resulting from in-phase versus out-of-phase target images to better associate changes in neural activity with entrainment and the observed behavioral effects.

References


Acknowledgments

Research was funded by the Keck Neuroscience Grant awarded through the Arts, Humanities, and Social Sciences Summer Research Grant program at the University of Puget Sound. Special thanks to David Andresen for his support, guidance, and collaboration.