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Neutrino tomography

Margaret A. Millhouse and David C. Latimer
Department of Physics, Reed College, Portland, Oregon 97202

(Received 2 July 2012; accepted 17 July 2013)

Neutrinos are produced in weak interactions as states with definite flavor—electron, muon, or

tau—and these flavor states are superpositions of states of different mass. As a neutrino propagates

through space, the different mass eigenstates interfere, resulting in time-dependent flavor oscillation.

Though matter is transparent to neutrinos, the flavor oscillation probability is modified when

neutrinos travel through matter. Herein, we present an introduction to neutrino propagation through

matter in a manner accessible to advanced undergraduate students. As an interesting application, we

consider neutrino propagation through matter with a piecewise-constant density profile. This scenario

has relevance in neutrino tomography, in which the density profile of matter, like the Earth’s interior,

can be probed via a broad-spectrum neutrino beam. We provide an idealized example to demonstrate

the principle of neutrino tomography. VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4817314]

I. INTRODUCTION

In the standard model of particle physics, the neutrino comes
in three flavors, each paired with one of the charged leptons.
Neutrinos were originally assumed to be massless, but the first
hint that this was not the case came from solar neutrino experi-
ments. The standard solar model (SSM)1 predicts the expected
flux of neutrinos incident upon the Earth; however, experimen-
tal detection of solar neutrinos indicated a flux that ranged from
30% to 60% of the expected values.2–5 These experiments pri-
marily detected electron neutrinos. The Sudbury Neutrino
Observatory employed elements in its neutrino detector that
were sensitive to all flavors. By its count, the total neutrino flux
was consistent with the expectations from the SSM.6 Presently,
the overwhelming majority of experiments that detect neutrinos
from disparate sources—atmospheric,7 reactor,8,9 and accelera-
tor beam-stop neutrinos10,11—can be understood in terms of
three massive neutrinos that mix nontrivially.12

A historical overview of neutrino physics can be found in
this journal,13 including an overview of the experiments that
have led to our current understanding of oscillations.14,15

In order for neutrinos to undergo flavor oscillation, two con-
ditions must be met. First, the neutrinos must be massive;
second, the flavor states, created through the weak interac-
tions, must be superpositions of these mass eigenstates.

Neutrinos travel at highly relativistic speeds, yet neutrino
oscillations can be understood using tools from a first course
in quantum mechanics. Indeed, one introductory quantum
mechanics text discusses two-flavor neutrino oscillations as
an example of a two-state system.16 In Sec. II, we derive the
neutrino oscillation formula for three neutrinos propagating
in vacuum. In light of the known values of the neutrino
oscillation parameters, we discuss how a given neutrino
experiment can be understood within the framework of only
two oscillating neutrinos.

Though neutrino propagation through vacuum conveys the
essential physics of flavor oscillations, a key component in
understanding solar and atmospheric neutrino data is the impact
that dense media have upon the neutrino oscillations. Dense
media like the Sun’s or Earth’s interior are largely transparent
to neutrinos; however, the neutrino oscillation parameters are
modified via an effective index of refraction, a consequence of
the coherent forward scattering of the neutrinos by the back-
ground matter. In Sec. III, we derive the oscillation formula for

a two-flavor system of neutrinos that travel through matter of
constant density and demonstrate the impact that matter plays
upon neutrinos traveling through the Earth’s mantle and core.
The derivation relies upon the generalized index of refraction
formula in dilute media.17 This formula is an interesting appli-
cation of scattering theory appropriate for the second semester
of an undergraduate quantum mechanics course, and we repro-
duce its derivation in the Appendix.

An understanding of neutrino-matter interactions opens up
a rich new class of examples that can be explored by under-
graduates. As a simple application, we derive in Sec. IV, the
oscillation probability for neutrinos traveling through matter
with a piecewise-constant density profile. This matter profile
has significance because atmospheric neutrinos that traverse
the entire diameter of the Earth encounter a density that can
be approximated as piecewise-constant; that is, the Earth can
be modeled as a dense core surrounded by a less-dense man-
tle.18 Through a series of examples we show how the size and
location of an inhomogeneity in an otherwise constant-density
matter profile affects the neutrino oscillation probability.

Though the neutrino itself is still an object of intense
study, as our knowledge of the neutrino oscillation parame-
ters becomes more precise, the neutrino can become a tool to
study other physical systems. In particular, since neutrinos
interact very weakly with matter, solar neutrinos can stream
through the Sun virtually unaltered, carrying with them
information about the nuclear processes that produced them.
As another application, one can use a beam of neutrinos to
probe the density profile of the interior of an object like the
Earth; this is the goal of neutrino tomography. From the
detected neutrinos, one can gain clues about the electron
density of the material through which they travel. Accessible
overviews of neutrino tomography can be found in Refs. 19
and 20, and in Sec. V, we provide an explicit demonstration
of these ideas in an idealized simulation. Assuming an ideal
broadband neutrino source and detector, we show how the
analysis of the neutrino oscillation probability at the detector
can be used to identify the position of an inhomogeneity in
an otherwise constant-density region of the Earth.

II. VACUUM OSCILLATION

Neutrino oscillation data are consistent with the existence
of three neutrino eigenstates �j of distinct mass mj, j ¼ 1; 2; 3.
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Representing one of these weak interaction states as �a,
where a ¼ e; l; s, we relate the flavor states to the mass
eigenstates through a unitary 3� 3 mixing matrix U:

�a ¼
X3

j¼1

Uaj�j: (1)

A general 3� 3 unitary matrix can be parameterized with
nine real parameters; however, several of these parameters
cannot be probed with neutrino oscillations. For neutrino
oscillations, the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
mixing matrix21,22 can be parameterized with four real param-
eters, consisting of three mixing angles hjk and a phase d:

U ¼
1 0 0

0 cos h23 sin h23

0 �sin h23 cos h23

0BB@
1CCA

�
cos h13 0 eidsin h13

0 1 0

�e�idsin h13 0 cos h13

0BB@
1CCA

�
cos h12 sin h12 0

�sin h12 cos h12 0

0 0 1

0BB@
1CCA: (2)

Aside from the phase, the PMNS matrix is a product of three
two-dimensional rotations of a plane. A global analysis of
the neutrino experimental data is consistent with the mixing
angles h12 ¼ 34�61

�
, h13 ¼ 8:9�60:5�, and h23 ¼ 39�62�;

the value of the phase d is poorly constrained.23

The evolution of this system is governed by the states of
definite mass. Supposing that the neutrino has definite mo-
mentum p, for each mass eigenstate, we have

i@t�jðtÞ ¼ Ej�jðtÞ; with Ej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

j þ p2

q
; (3)

where we choose a system of units in which �h ¼ c ¼ 1.
Cosmological bounds place neutrino rest masses on the scale
of electronvolts.24 Typical neutrino energies are at least on
the MeV scale, so we make the relativistic approximation

Ej ’ p 1þ
m2

j

2p2

 !
’ pþ

m2
j

2E
; (4)

where the final energy E neglects the size of mj at this order
of approximation. From this, we can determine the time evo-
lution of the weak interaction states, which we represent as a
column vector �ðtÞ ¼ ð�eðtÞ; �lðtÞ; �sðtÞÞT:

i@t�ðtÞ ¼ pþm2
1

2E

� �
Iþ 1

2E
U diagð0;D21;D31ÞU†

� �
�ðtÞ;

(5)

where I is the 3� 3 identity matrix and Djk ¼ m2
j � m2

k are
the mass-squared differences. Expressing the exponential of
a matrix through its power series, the solution to this differ-
ential equation is simply

�ðtÞ ¼ exp½�iH0t��ð0Þ: (6)

In the exponential, we drop the part of the vacuum
Hamiltonian proportional to the identity and define

H0 ¼
1

2E
U diagð0;D21;D31ÞU†: (7)

As any multiple of the identity commutes with H0, upon
exponentiation, the identity term will result in an unmeasura-
ble overall phase on the state �ðtÞ, which we omit for the
sake of convenience.

With the time evolution of the system established, we can
determine the neutrino oscillation probability. Suppose a
localized source emits neutrinos of flavor a at time t¼ 0, i.e.,
�ð0Þ ¼ �a. Then some time t after leaving the source, the
probability of detecting neutrinos of flavor b in the beam is

Pa!bðtÞ ¼ jh�bj�ðtÞij2: (8)

Typically, the neutrino source and detector occupy fixed
positions, and it is much more convenient to speak of their
separation baseline L. As the neutrinos are ultrarelativistic,
one has t ’ L (where c¼ 1) so we can express the oscillation
probability as

Pa!bðLÞ ¼ dab � 4
X3

k < j

j; k ¼ 1

ðUajUakUbkUbjÞsin2 DjkL

4E

� �
;

(9)

where, for simplicity, we have chosen the phase d ¼ 0. We
note the appearance of four factors of the PMNS matrix
elements in the formula. This is because the evolution of a
flavor state involves a rotation to the mass basis, evolution of
the mass state, and then a rotation back to the flavor basis,
resulting in two factors of PMNS matrix elements. A careful
examination of this equation demonstrates the two require-
ments for neutrino oscillation: at least two of the massive
eigenstates must have distinct masses and mix nontrivially.

For a neutrino beam with a narrow energy spectrum, there
are ostensibly three length scales over which neutrino oscilla-
tions occur. For each mass-squared difference, we can charac-
terize these length scales with the vacuum oscillation
wavelength k0 ¼ 4pE=Djk. In fact, the measured values of the
mass-squared differences are23 D21 ¼ 7:5þ0:3

�0:2 � 10�5 eV2 and
jD32j ¼ 2:4þ0:1

�0:1 � 10�3 eV2. Since these two mass-squared dif-
ferences are on vastly different scales and D31 ¼ D32 þ D21,
oscillations actually occur over two rather distinct length
scales: those driven by D21 and those driven by D31 � D32.
Coupling this with the smallness of the mixing angle h13,
one can interpret, to a good approximation, an individual
neutrino experiment as the oscillation between two neutrino
states. The figure of merit needed to determine the relevant
oscillation scale in an experiment is the range of the values
of the ratio L/E that the experiment spans. For instance, if
the baseline-to-energy ratio for an experiment satisfies
D21L=E � Oð1Þ, then the oscillatory terms in Eq. (9) for the
other two mass-squared differences will not be resolvable by
a detector. In this case, we can average over these oscilla-
tions, resulting in�

sin2 D32L

4E

� ��
avg

¼
�

sin2 D31L

4E

� ��
avg

¼ 1

2
: (10)
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One oscillating term remains in the probability, Eq. (9), and
if we make the approximation h13 ¼ 0, then the electron neu-
trino survival probability is

Pe!e ’ 1� sin2 2h12 sin2 D12L

4E

� �
: (11)

This is identical to the survival probability for two flavors. In
the appearance channel, electron neutrinos oscillate into
roughly an equal admixture of muon and tau neutrinos,
which we will refer to simply as �a. As this process is uni-
tary, the appearance oscillation probability is then

Pe!a ’ sin2 2h12 sin2 D12L

4E

� �
: (12)

In what follows, we shall only consider a two-neutrino
system, consisting of �e and �a. This greatly simplifies the
formulae without trivializing the physics. This approxima-
tion will be valid so long as we consider baseline and neu-
trino energies that satisfy L=E � D�1

21 � 104 m/MeV. If we
consider reactor neutrinos as our source, their energy range
is from 1 to 10 MeV so that the relevant baselines are on the
order of kilometers. As there is only one mixing angle and
mass-squared difference, we will drop the subscripts to ease
the notation and set h ¼ h12 and D ¼ D21. For this two-
neutrino system, the mixing matrix can be parameterized by
the single mixing angle h; it takes the familiar form of a rota-
tion matrix in the plane:

�e

�a

� �
¼ cos h sin h
�sin h cos h

� �
�1

�2

� �
: (13)

Strictly speaking, the state �2 in the above equation actually
represents a linear combination of mass eigenstates �2 and
�3; however, the point remains that in this restricted region
of parameter space a two-neutrino subspace decouples from
the full three-neutrino picture.

III. MATTER INTERACTIONS

Vacuum oscillations alone are not sufficient to account for
all neutrino data; see Ref. 12 for a review. Neutrinos’ inter-
actions with the matter through which they travel are crucial
in accommodating the solar and atmospheric neutrino data.
Though neutrinos interact very weakly, their propagation is
modified in a manner akin to that experienced by light travel-
ing through a transparent medium. The index of refraction
for light through a dilute medium can be related to micro-
scopic properties of the medium by computing the interfer-
ence between the largely transmitted incident beam and the
scattered waves.25,26 For a random distribution of scatterers,
only the forward portion of the scattered waves will interfere
constructively; as a result, the deviation of the refractive
index from unity is proportional to the forward scattering
amplitude and the density of scatterers.

The analysis was extended to particle physics by Fermi.17

His derivation is an interesting application of nonrelativistic
scattering theory, appropriate for undergraduate students; we
have reproduced the arguments in the Appendix. As with
light, the index of refraction for a particle of momentum p in
a dilute medium of scatterers with number density N is
related to the forward scattering amplitude f(0) according to

n ¼ 1þ 2pN
f ð0Þ
p2

: (14)

Neutrinos are ultrarelativistic and travel through dense
media, but it has been shown that this equation holds regard-
less.27 The index of refraction modifies the momentum of
the particle in the medium, ~p ¼ np, which can be regarded as
adding effective mass to the particle:

E2 ¼ ~p2 þ m2 � p2 þ 4pNf ð0Þ þ m2; (15)

neglecting the term that is proportional to ðn� 1Þ2. This extra
term in the dispersion relation can be accounted for by adding a
small effective potential, V ¼ 2pNf ð0Þ=E, to the Hamiltonian.
Both Mikheyev and Smirnov28 and Wolfenstein29 independ-
ently described this MSW effect for neutrinos propagating
through matter.

To compute the forward scattering amplitude for neutrinos
in matter, we recall that neutrinos interact via the weak force, a
short-range force mediated by either the neutral Z0 boson or
the charged W6 boson.30 Through the neutral current, all three
neutrino flavors interact with ordinary matter (comprised of
electrons and up and down quarks) with equal strength. As a
result, the neutral-current contribution to the forward scatter-
ing amplitude is the same for all flavors. Adding this interac-
tion to the Hamiltonian H0 will result in a potential that is
proportional to the identity. As before, such terms result in an
unmeasurable phase and do not affect the oscillation probabil-
ity. On the other hand, charged-current interactions are flavor
dependent. The W boson couples electrons with electron neu-
trinos, and it also couples up and down quarks. For instance,
an incoming electron neutrino can exchange a W boson with a
down quark in a neutron resulting in a proton and electron,
�e þ n! e� þ p. As we are interested only in coherent for-
ward scattering, this process is irrelevant. The only relevant
process is �e þ e� ! �e þ e�, mediated by the charged weak
interaction, Fig. 1. Keeping only the leading-order term, the
charged-current contribution to the forward scattering ampli-
tude is f ð0Þ ¼ GFE=

ffiffiffi
2
p

p, where GF is Fermi’s constant.
Thus, neglecting neutral-current interactions, we add to the
Hamiltonian a potential V ¼

ffiffiffi
2
p

GFNe for the electron flavor
only, with Ne the local electron density. For electron anti-
neutrinos, the potential acquires a minus sign.

Within the two-neutrino framework, neutrino evolution in
matter is governed by a new Hamiltonian HmðxÞ:

i@t

�eðtÞ
�aðtÞ

 !
¼ 1

4E

�cos 2hDþ 4EVðxÞ sin 2hD

sin 2hD cos 2hD

 !

�
�eðtÞ
�aðtÞ

 !
; (16)

Fig. 1. Forward scattering of an electron neutrino on an electron mediated

by the charged-current interaction.

648 Am. J. Phys., Vol. 81, No. 9, September 2013 Margaret A. Millhouse and David C. Latimer 648

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

207.207.127.233 On: Wed, 06 May 2015 16:28:56



where we emphasize the local dependence of the potential
attributable to the electron number density NeðxÞ. For rela-
tively heavy stable nuclei, we can assume that there is
roughly one electron per two nucleons in an atom, so that the
electron density can be written in terms of the mass density
of the matter, NeðxÞ ¼ qðxÞ=ð2mNÞ, with mN the nucleon
mass. If we express the mass density in units of g/cm3, then
this yields the potential

VðxÞ ¼ 3:76� 10�14 q
g=cm3

eV: (17)

For a region of constant electron density, the solution to
Eq. (16) exactly follows the vacuum case, Eq. (6); however,
it is more instructive to first diagonalize Hm. If we were to
diagonalize the vacuum Hamiltonian H0, we would find that
the difference in its eigenvalues would be the mass-squared
difference and its eigenvectors would be the mass eigen-
states. Likewise, diagonalizing Hm yields eigenvalues whose
difference is the effective mass-squared difference Dm and
eigenvectors that are the effective mass eigenstates in matter.
We can make Hm traceless, since adding a multiple of the
identity results in unmeasurable phase. In doing so, the mat-
ter Hamiltonian takes a simple form

Hm ¼
Dm

4E

�cos 2hm sin 2hm

sin 2hm cos 2hm

 !
; (18)

with the effective mass-squared difference given by

Dm ¼ D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos 2h� 2EV=DÞ2 þ sin2 2h

q
; (19)

and the effective matter mixing angle given by

sin 2hm ¼
sin 2hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcos 2h� 2EV=DÞ2 þ sin2 2h
q : (20)

By analogy with the vacuum case, the oscillation probability
in matter of constant density is

Pe!aðLÞ ¼ sin2 2hmsin2 DmL

4E

� �
: (21)

Referring to Eq. (20), we see that the oscillation probability
can reach unity if the neutrino energy is at the MSW resonance
energy, ER ¼ D cos 2h=2V. For neutrinos that travel through
the Earth’s interior, the matter density ranges from 3 g/cm3 in
the mantle to 15 g/cm3 in the Earth’s core.18 This results in
MSW resonance energies that range from 140 MeV in the
mantle to 30 MeV in the core. In Fig. 2, we plot the ratio
sin 2hm=sin 2h as a function of energy for a fixed density and
vacuum mixing angle h ¼ 34�. We also show Dm=D. Focusing
on the matter mixing angle, we see that maximal mixing is
achieved at the resonance and then the oscillation amplitude
decreases as 1=E far beyond the resonance. The effective
mass-squared difference exhibits the inverse behavior.

In Fig. 3, we plot the �e ! �a oscillation probability within
regions of constant density; all curves employ the same
energy E¼ 100 MeV and vacuum mixing angle h ¼ 34�.
Vacuum oscillations are depicted by the solid curve. Given
the mixing angle, we see that the maximum probability of
measuring a �a neutrino produced by a �e source is

sin22h ¼ 0:86. For the dotted curve, we dial up the density
of matter through which the neutrinos travel so that the
neutrino’s energy matches the MSW resonance energy,
namely q ¼ 3:75 g/cm3. As expected, the maximum oscilla-
tion probability rises to unity, and consistent with Fig. 2, the
wavelength of oscillation in matter slightly increases. Further
increasing the density, we select a value q ¼ 15 g/cm3 that
results in E ¼ 4ER. As we are far beyond the resonance, we
see that the amplitude of the oscillation is diminished by more
than 50%, consistent with Fig. 2.

IV. PIECEWISE-CONSTANT DENSITY PROFILE

Using the results from the two previous sections, we can
construct the oscillation probability for a neutrino traveling
through matter with a piecewise-constant density profile. It
is illustrative to consider one of the simplest examples of
such a profile, which is relevant for neutrinos that traverse
the Earth’s core. We will suppose that the neutrinos travel
through a region of constant density qA but encounter a
region of length LB with a different constant density qB.
Specifically, the neutrinos see an effective potential

Fig. 3. Oscillation probability Pe!a in vacuum or constant-density matter

with fixed vacuum mixing angle h ¼ 34
�

and energy E¼ 100 MeV.

The baseline is expressed in terms of the vacuum oscillation wavelength

k0 ¼ 3300 km. The solid line depicts vacuum oscillations. For the dotted

line, the density is q ¼ 3:75 g/cm3 so that E ¼ ER. For the dashed line, the

density is q ¼ 15 g/cm3 so that E ¼ 4ER.

Fig. 2. The solid line is a plot of the ratio sin 2hm=sin 2h as a function of

energy in units of the resonance energy. The dashed line is a plot of the ratio

Dm=D as a function of energy. Both curves use the vacuum mixing angle

h ¼ 34�.
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VðxÞ ¼
VA for 0 � x < LA

VB for LA � x < LA þ LB

VA for LA þ LB � x < L ;

8><>: (22)

where the last vacuum region has length L0A so that
L ¼ LA þ LB þ L0A. If the initial neutrino state is �ð0Þ, then
we sew together the evolution operators from the constant
density solutions,

�ðLÞ ¼ exp½�iHAL0A� exp½�iHBLB� exp½�iHALA��ð0Þ;
(23)

where HA and HB refer to the matter Hamiltonian, Eq. (18),
with densities qA and qB. Though we could write an analytical
expression for the oscillation probability, it would be opaque.
Instead, we will consider a few numerical solutions to show-
case the dependence of the probability on both the size and
placement of the inhomogeneity. So that we can continue to
neglect D31 ’ D32 oscillations, we require L=E	 1 km/MeV.
If we consider atmospheric neutrinos that travel along chords
through the Earth’s interior, then the baselines under consider-
ation are on the order of 103 km or more. To be definite,
we will consider neutrinos with energies of 200 MeV; this
energy safely justifies our two-neutrino framework. Employing
matter densities consistent with the Earth’s interior,18 we set
qA ¼ 5 g/cm3 and qB ¼ 15 g/cm3. These densities correspond
to oscillation wavelengths kA ¼ 5900 km and kB ¼ 2370 km,
respectively.

In Fig. 4, we plot the oscillation probability for the
piecewise-constant density profile in Eq. (22) for two differ-
ent lengths LB. In panel (a), the inhomogeneity has a length
equal to an integer number of wavelengths, 4kB. In such a
situation, the oscillation probability in the subsequent region
has the usual amplitude and appears only phase-shifted rela-
tive to the oscillation probability if the higher density region
were not present. To contrast, in panel (b), the higher density
region is positioned at the same point LA but with a width
that is an integer plus one-half wavelengths, 3:5kB. Upon
exiting this denser region, the oscillations now exhibit an

enhanced probability of �a detection with an increased am-
plitude of oscillation and overall offset from zero.

This second result is somewhat surprising. From Fig. 3,
we see that if the neutrino energy is greater than the MSW
resonance, then the amplitude of oscillation is diminished
relative to the vacuum; however, this apparently does not
hold if the density of matter is not constant. In the matter of
density qB, the amplitude is greater than sin22hB, and in the
second vacuum region, the amplitude exceeds sin22hA. This
is counterintuitive in light of Eq. (21), but the resolution lies
in the fact that, when deriving the constant density oscilla-
tion formulae, we required that the initial neutrino state have
definite flavor. In Fig. 4, at the boundaries between the
regions, the neutrino state is neither purely �e nor �a; instead,
it is more generally � ¼ ðn; vÞT with jnj2 þ jvj2 ¼ 1. This
can modify the amplitude and offset of the oscillation proba-
bility; a specific illustration will follow. We make one final
point regarding panel (a) of Fig. 4. If the matter inhomogene-
ity is an integer number of wavelengths (in the region), then
the state of the system leaving the inhomogeneity is essen-
tially the same as the state entering the region; as such, the
inhomogeneity can produce only a phase shift in the oscilla-
tion probability.

In Fig. 5, we compare higher density regions of the same
lengths but located at different positions, LA. We set LB to be
an integer plus one-half wavelengths. In panel (a), the value
for LA is 2:5kA. We see the oscillation probability rise to
unity upon exiting the block of matter. Generally, if we were
to create a periodic matter profile satisfying this half-
wavelength condition for both regions, then the oscillation
probability would eventually rise to unity regardless of the
value of the vacuum mixing angle or the effective matter
mixing angle.31 This phenomenon is the analog of paramet-
ric resonance in mechanical systems; it was first appreciated
in Ref. 32. In panel (b), the higher density region is at the
position LA ¼ 2kA. Again, here the oscillation probability is
diminished upon exiting the higher density region.

Let us explore in detail two particular transitions between
matter regions in Fig. 5. First, in panel (a), we note that at
the first transition at LA the state of the system is �
¼ ðcos 2hA; �sin 2hAÞT , up to a phase. A similar expression

Fig. 4. The solid curves depict the oscillation probability for 200 MeV neu-

trinos traveling through the density profile in Eq. (22) with qA ¼ 5 g/cm3

and qB ¼ 15 g/cm3. The white areas indicate the regions of density qA, and

the shaded areas represent the regions of density qB. The dashed lines repre-

sent the oscillation probability were the higher density region not present.

The vacuum mixing angle is h ¼ 34�, kA ¼ 5900 km, and kB ¼ 2370 km.

For (a), LA ¼ 1:75kA and LB ¼ 4kB. For (b), LA ¼ 1:75kA and LB ¼ 3:5kB.

Fig. 5. The solid curves depict the oscillation probability for 200 MeV neu-

trinos traveling through the density profile in Eq. (22) with qA ¼ 5 g/cm3

and qB ¼ 15 g/cm3. The white areas indicate the regions of density qA, and

the shaded areas represent the regions of density qB. The dashed lines repre-

sent the oscillation probability were the higher density region not present.

The vacuum mixing angle is h ¼ 34�, kA ¼ 5900 km, and kB ¼ 2370 km.

For (a), LA ¼ 1:5kA and LB ¼ 3:5kB. For (b), LA ¼ 2kA and LB ¼ 3:5kB.
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holds for the system in panel (b). At the transition located at
LA þ LB, the state is � ¼ ðcos 2hB; �sin 2hBÞT , up to a phase.
In both cases, we will refer to the mixing angle to the left of
these boundaries with the subscript 1 so that we can simply say
that the state is �ð0Þ ¼ ðcos 2h1; �sin 2h1ÞT . For the region to
the right of the boundary, we will denote the effective mixing
angle and mass-squared difference with h2 and D2, respec-
tively. Then, in region 2, we have �ðL2Þ ¼ exp½�iH2L2��ð0Þ
as usual, leading to the oscillation probability

Pe!aðL2Þ ¼ sin 2h2sinð2h2 � 4h1Þsin2 D2L2

4E

� �
þ sin2 2h1: (24)

In this particular case, we see explicitly that the unexpected
amplitude of oscillation and offset from zero in region 2 are
results of the mixed initial state �ð0Þ at the boundary between
the regions.

V. THE INVERSION PROBLEM: LOW DENSITY

LIMIT

Neutrino tomography is the use of a neutrino beam to
determine the matter profile through which the beam passes;
this is essentially the inverse of the problem presented in
Sec. IV. Possible applications of neutrino tomography would
be to complement geophysical measurements of the profile
of the Earth’s interior or to find large deposits of oil.33 A re-
alistic study of tomography indicates that a precise determi-
nation of such profiles will be challenging, with statistics
being a limitation even when the neutrino oscillation param-
eters become precisely known.19

To demonstrate the essential physics of tomography, we
will consider an idealized example in which the neutrino
oscillation parameters are known to high precision. We also
imagine an idealized source with well-characterized spec-
trum and an idealized detector with sufficient resolution.
We will consider the situation in which a broad spectrum
beam of neutrinos travels through a region of matter that
has constant density qA aside from an inhomogeneity of
length LB and density qB, Eq. (22). By analyzing mock neu-
trino “data” at the detector [computed from Eq. (23)], we
hope to be able to determine LA, LB, and the electron den-
sity of the inhomogeneity.

A general solution to the inversion problem for the
piecewise-constant density profile does not exist, but head-
way can be made if one has some information about the
matter. For instance, if it is not too dense34 (or, rather,
the neutrino energy is less than the MSW resonance) and if
the inhomogeneous region is not too long (relative to the
oscillation wavelength in medium A), then the oscillation
probability in the presence of the inhomogeneity simplifies
appreciably. Formally, for the first approximation, we
require E
 ERA;B

for both regions. These conditions can be
satisfied for an arbitrary energy as long as the densities
are small enough. Defining EdV ¼ ðE�1

RB
� E�1

RA
Þ�1

, we
expand in a Taylor series the effective mass squared differ-
ence and mixing angle in region B relative to their values in
region A:

DB ¼ DA 1� cos2 2h
E

EdV

� �
þO E2

E2
RA;B

 !
; (25)

sin 2hB ¼ sin 2hA 1þ cos2 2h
E

EdV

� �
þO E2

E2
RA;B

 !
: (26)

Additionally, we consider a relatively short inhomogeneity,
that is, LB 
 kA. Recalling that kA ¼ 4pE=DA, this limit
effectively places a lower bound upon the neutrino energy
for a given LB. To implement this approximation, we expand
the relevant functions to first order in LB=kA:

sin
DALB

4E

� �
¼ DALB

4E
þO L3

B

k3
A

 !
; (27)

cos
DALB

4E

� �
¼ 1þO L2

B

k2
A

 !
: (28)

Neglecting any terms second-order in the “small” quantities,
we find that the difference between the oscillation probabil-
ity with the inhomogeneity in place and the constant-density
scenario takes a simple form

dPe!aðLÞ ’ ðVB � VAÞLBsin2 2hAcos 2h

� cos
DAL

4E

� �
� cos

DAð2LA � LÞ
4E

� �" #
sin

DAL

4E

� �
:

(29)

Since the distance L is fixed and the energy is actually varied
in our thought experiment, we prefer to think of this quantity
in terms of x ¼ DA=4E. Then, a Fourier transform of
dPe!aðxÞ allows one to determine LA:

bdPe!að‘Þ ¼
1ffiffiffiffiffiffi
2p
p

ð1
�1

dPe!aðxÞe�ix‘ dx

’ i
ffiffiffi
p
p
ðVB � VAÞLBsin2 2hA cos 2h

2
ffiffiffi
2
p

� ½dð‘� 2LÞ � dð‘þ 2LÞ þ dð‘þ 2LAÞ
� dð‘� 2LAÞ þ dð‘þ 2L� 2LAÞ
�dð‘� 2Lþ 2LAÞ�; (30)

where we use expression (29) to approximate the transform.
The experimental procedure is now clear. If the spectrum

of the neutrino beam is chosen to satisfy the two requirements
DALB 
 E
 ER, one can compare the measured neutrinos at
the detector to the constant-density oscillation expectations;
that is, one can measure dPe!aðxÞ. A Fourier transform of
these data can allow one to determine LA, and then from the
amplitude of dPe!aðxÞ, one can determine the product
ðVB � VAÞLB, making use of LA in Eq. (29). At this level of
approximation, one cannot independently determine VB or LB.
On the theoretical side, this can be rectified by including
higher-order terms in the Taylor expansion involving LB; how-
ever, on the experimental front, the data would need to have a
higher energy resolution. Regardless, at the present level of
approximation, if one happens to know the electron density of
the inhomogeneity (say, it is a particular type of ore or a petro-
leum deposit), then LB can be determined.

To be explicit, we assume our source to be reactor anti-
neutrinos traveling through the Earth’s mantle, and we set
qA ¼ 3:0 g/cm3. The spectrum of electron anti-neutrinos
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from a reactor is well known,35 but for simplicity we will
take the spectrum to be flat from 1 MeV to 10 MeV with a
detector energy resolution that ranges from 0.5% to 5%. This
range of energies is well below the resonant energy for D21

oscillations even for core densities that approach 15 g/cm3.
We fix the source-to-detector baseline to be 300 km. From
the low to the high end of the spectrum, the oscillation wave-
length in the mantle ranges from 30 to 300 km, restricting
the size of the inhomogeneity to be on the order of tens of
kilometers. We choose the size of the inhomogeneity be
LB ¼ 10 km with a density of 8 g/cm3, located at a position
LA ¼ 90 km. Using the exact evolution, Eq. (23), we can
generate mock idealized data cast in terms of the function
dPe!aðxÞ. In Fig. 6, the solid curve represents these data
over the relevant energy range. In the same figure, the dashed
curve represents a calculation of dPe!aðxÞ using the approx-
imate expression in Eq. (29), valid for low-density, small
inhomogeneities. The two curves agree rather well for lower
values of x (i.e., higher values of the energy). As x increases
(the energy decreases), the approximation worsens as the
errors incurred from the finite size of the inhomogeneity
become significant.

With these data, we use the FFT routine in Grace,36 a
graphical program, to compute the magnitude of the Fourier
transform of dPe!aðxÞ, displayed in Fig. 7. We identify

three peaks corresponding to ‘ ¼ 2LA; 2ðL� LAÞ; and 2L, per
Eq. (30). The peak with the largest value of ‘ is located
at approximately 609 km and corresponds to 2L, implying
L ’ 305 km. This is consistent with the experimental setup,
given the limited resolution of the mock data. There is ambi-
guity in the identity of the two remaining peaks. It could be
that the ‘ ¼ 406 km peak corresponds to 2LA, or it is possible
that the other peak at ‘ ¼ 162 km corresponds to 2LA. If we
were to compute the Fourier transform of the exact expression
for dPe!aðxÞ, we would find that this degeneracy, though
somewhat modified, would remain; in particular, the oscilla-
tion probability at the detector, Pe!aðLÞ, is invariant under
the interchange LA $ L0A. This speaks to the presence of a
symmetry in the system. Generally, if the mixing matrix U is
real,37 then the system is invariant under time reversal. That is
to say, if the state �a travels from the source through the mat-
ter profile and is detected as state �b at the detector, then with
equal probability we expect the state �b, starting at the detec-
tor and traveling the opposite direction through the matter, to
be detected as the state �a at the source. Symbolically, we
write this as Pa!bðLÞ ¼ Pb!að�LÞ, where the negative sign
in the second argument indicates a reversal of the orientation
of the neutrino’s path. Applying time reversal to the present
situation implies Pe!aðLÞ ¼ Pa!eð�LÞ; however, this does
not explain the above degeneracy. What we need to show is
Pe!aðLÞ ¼ Pe!að�LÞ. For a three-neutrino system, this state-
ment is not true, but for a two-state system, it happens to be
true. Generically, if the initial and final states are the same,
then we have Pe!eðLÞ ¼ Pe!eð�LÞ. But, in our two-state sys-
tem, the sum of the appearance and survival probabilities is
unity, so that Pe!eðLÞ ¼ 1� Pe!aðLÞ; this yields the desired
result.

In short, we can determine the position of the inhomoge-
neity only up to a two-fold degeneracy; in this case, either
LA ’ 203 km or LA ’ 81 km. With knowledge of LA, we
can then fit the data to the approximate form for dPe!aðx0Þ,
Eq. (29), to determine ðVB � VAÞLB. These results are predi-
cated upon the assumption that one could actually realize the
necessary energy resolution and be sensitive to deviations in
the oscillation probability at the level of less than a percent.
The energy resolution is not unreasonable, as it compares
favorably to another reactor anti-neutrino detector.8 As for
the measurements of the oscillation probability, both statisti-
cal and systematic errors would currently limit the ability to
push the measurements down to the needed level of precision
for the scenario presented. If the size of the inhomogeneous
region were larger, then the oscillation probability could dif-
fer from the constant-density oscillation probability at a
measurable level. One could then extract information about
the inhomogeneity from dPe!aðxÞ, but the analysis would
more than likely require Monte Carlo simulations rather than
a mere Fourier transform.

VI. CONCLUDING REMARKS

For a two-neutrino system, we developed the evolution
equation for propagation in vacuum and in constant-density
matter, allowing us to calculate the oscillation probability for
these cases. Using these results, we are able to compute the
oscillation probability for neutrinos that travel through a
region with a piecewise-constant density profile. Focusing
upon a simple profile, we show how both the size and position
of an inhomogeneity have nontrivial consequences for the os-
cillation probability. The enhancement of the probability for

Fig. 6. The difference in oscillation probabilities, dPe!aðxÞ, for LA ¼ 90 km,

LB ¼ 10 km, and L ¼ 300 km. The vacuum mixing angle is h ¼ 34
�
, and the

matter densities are qA ¼ 3 g/cm3 and qB ¼ 8 g/cm3. The anti-neutrino

energy ranges from 1 to 10 MeV. The solid curve is computed without

approximation from Eq. (23). The dashed curve is computed from the approx-

imate expression in Eq. (29).

Fig. 7. The magnitude of the Fourier transform of dPe!aðxÞ. Only positive

values of ‘ are shown.
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the situation depicted in Fig. 5(a) has important implications
for modeling atmospheric neutrinos that pass through the inte-
rior of the Earth, whose density is approximately piecewise-
constant. Inverting the problem, we show how an idealized
beam of neutrinos can be used to assess the density profile of
the medium through which they travel. Considering a simple
profile in the low-density and small-size inhomogeneity limits,
we show that by comparing the measured oscillation probabil-
ity to its constant-density value one can determine (up to a
twofold degeneracy) the position of the inhomogeneity and
the product of its density and length.

Several extensions of these calculations naturally arise.
One could explore neutrino tomography with the same sim-
ple model considered above but instead examine different
energy regimes. In particular, one could develop approxi-
mate formulae for dPe!a for energies either near or far
beyond the MSW resonance. Additionally, one can deal with
more complicated density profiles. This would allow one to
effect adiabatic transitions where neutrinos travel through a
medium with a small density gradient; such transitions are a
key component to explaining the solar neutrino problem. In
short, neutrino oscillations in matter represent physically rel-
evant but accessible two-state systems that can be studied in
an introductory quantum mechanics course.
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APPENDIX: THE GENERALIZED INDEX OF

REFRACTION

We derive Fermi’s generalized index of refraction for-
mula.17 This derivation is similar to that in classical electro-
dynamics, which results in the index of refraction for light
traveling through a dilute medium.26 We consider a plane
wave wðzÞ ¼ Aeikz, with wavenumber ~k0 ¼ kẑ, incident upon
a thin uniform slab with thickness d but laterally infinite in
extent; see Fig. 8. The slab needs to be thin enough so that
multiple scatterings can be neglected, and we assume that
the scattering centers in the slab are randomly distributed.
The goal is to compute the wave function “far” from the slab
at the point z0 on the z-axis; formally, we require kz0 	 1.

For a scattering center located at the origin of the coordi-
nate system, the wave function consists of the original plane
wave and outgoing spherical wave, assuming large r:

wð~rÞ ¼ A eikz þ f ðhÞ e
ikr

r

� �
: (A1)

We assume azimuthal symmetry so that the scattering ampli-
tude f ðhÞ is a function of h only. If we displace the scattering
center from the origin to a point located at ~r 0, then we must
modify the scattered portion of the wave function.
Supposing there are N scatterers per unit volume (assumed
to be constant in the slab), then the wave function with the
displaced scattering center is

wð~rÞ ¼ A eikz þ ei~k0�~r 0 f ðaÞ e
ikr

r
Nds0

� �
; (A2)

where ~r ¼~r �~r 0 and cosa ¼ r̂ � ẑ. We set ~r ¼ z0ẑ and use
cylindrical coordinates to refer to the slab. This yields the
volume element ds0 ¼ 2ps0ds0dz0 and r2 ¼ s02 þ ðz0 � z0Þ2.
Integrating over the slab, the scattered portion of the wave
function is

wscattðz0ẑÞ ¼ A2pN

ðd

0

dz0eikz0
ð1

0

f ðaÞ e
ikr

r
s0ds0: (A3)

For the first integral, we can substitute variables of integration
as s0ds0 ¼ r d r, changing the lower limit of integration to
jz0 � z0j. Using integration by parts, this integral becomesð1

jz0�z0j
f ðaÞeikr d r

¼ f ðaÞ
ik

eikr

� �1
jz0�z0 j
�
ð1
jz0�z0 j

eikr

ik

df ðaÞ
d cos a

d cos a
d r

d r:

(A4)

In the integral on the right-hand side, the second derivative
evaluates as d cos a=d r ¼ �jz0 � z0j=r2; assuming that the
scattering amplitude is well-behaved, this integral is sup-
pressed by a factor of ðkrÞ�1 
 1 and can safely be
neglected. For the surface term in Eq. (A4), the expression
does not converge at the upper limit; however, since the slab
is not truly laterally infinite, one typically introduces a factor
that forces the density of scatterers to go to zero for large s0.
We note that r ¼ jz0 � z0j whenever a ¼ 0, resulting inð1

jz0�z0 j
f ðaÞeikr d r � i

f ð0Þ
k

eikjz0�z0 j: (A5)

Since z0 > z0, when we plug this result into the remaining in-
tegral in Eq. (A3), we find that the integrand is constant,
yielding the final result

wscattðz0ẑÞ � A2piNd f ð0Þ e
ikz0

k
: (A6)

This scattered wave, Eq. (A6), is to be compared with a
plane wave that passes through a thin slab with index of
refraction n and thickness d. In a material, the wavenumber
becomes ~k ¼ nk so that at z0 the wave is

wðz0Þ ¼ Aeikðz0�dÞei~kd � Aeikz0 ½1þ ikdðn� 1Þ�; (A7)

given kd 
 1. The index of refraction for a dilute medium is
thus related to the forward scattering amplitude according to

n ¼ 1þ 2pN
f ð0Þ
k2

: (A8)Fig. 8. A plane wave impinges upon a slab of thickness d at normal inci-

dence. The primed coordinates refer to positions within the slab.
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