On the Degeneracies of the Mass-Squared Differences for Three-Neutrino Oscillations

Document Type


Publication Date


Publication Title

Modern Physics Letters A




Using an algebraic formulation, we explore two well-known degeneracies involving the mass-squared differences for three-neutrino oscillations assuming CP symmetry is conserved. For vacuum oscillation, we derive the expression for the mixing angles that permit invariance under the interchange of two mass-squared differences. This symmetry is most easily expressed in terms of an ascending mass order. This can be used to reduce the parameter space by one half in the absence of the MSW effect. For oscillations in matter, we derive within our formalism the known approximate degeneracy between the standard and inverted mass hierarchies in the limit of vanishing ?13. This is done with a mass ordering that permits the map ?31?-?31. Our techniques allow us to translate mixing angles in this mass order convention into their values for the ascending order convention. Using this dictionary, we demonstrate that the vacuum symmetry and the approximate symmetry invoked for oscillations in matter are distinctly different.