After the unanimous decision that we would discontinue any further plans to incorporate underground shelters in our new science building in connection with civil defense, the building committee consisting of Robert Sprenger, Gordon Alcorn and Martin Nelson proceeded to start designing a building with our own needs in mind. We met on many occasions and discussed the over-crowding in Howarth Hall, the needs, the plans, the future and the projected enrollment at the University of Puget Sound. All this was correlated to the needs of the sciences.

Out of our discussion came the unanimous opinion that we should completely abandon the idea of locating the science building on the Lawrence Street side of the campus, regardless of the fact that Howarth Hall was then serving as the science building. It was decided that the science complex should be located on the Union Street side; and, in a sense, we would have two main entrances to the campus. This would also carry out Dr. Todd's principle that anyone coming down a street would look right into a main section of a building on the campus; and, of course, this became true coming down 15th Street west of the campus.

As needs were discussed, individual departments were considered and whether there would be one building, two buildings, or three buildings. Finally, a compromise was reached when it was decided to have one U-shaped building with the center quadrangle facing on Union with 15th Street right in the middle. There was much discussion as to how all the departments
could be correlated and yet have individuality. It was decided that many of the classrooms should have multiple use for the various disciplines.

Using the same information I had received at the Harvard University workshop and that I had incorporated into McIntyre Hall, the building committee decided to use amphitheatre-type auditoria, so plans were made for two small and one medium-sized auditoria adjacent to the tower area of the complex.

We evaluated the needs of each of the disciplines in science and mathematics, made careful analyses of the laboratory space needed, classroom space needed, and individual offices needed. Then I asked the faculty to draw up rough sketches of the manner in which they would like to have their departments arranged for laboratory space, laboratory stations plus the new equipment that would be needed for the building. There was considerable difference of opinion and considerable maneuvering for space, as the departments attempted to predict the growth in the future. It was at this time that many students were wanting to be trained in the sciences and for that reason heavy enrollment was projected for all the departments of the sciences. Physics was especially favored by undergraduate students then, as was biology which had a very heavy premed emphasis. Chemistry was, likewise, a subsidiary for the premedic emphasis and its needs were very carefully considered. Geology, which had sort of grown up in kind of a "Topsy" situation at the
University of Puget Sound, seemed to have the least growth potential, although the committee concurred that Geology, because of its large collection of heavy rocks and the storage of other specimens, should be located on the ground floor.

The Mathematics Department was a service department to many other departments and it was located in a position for the multiple-use classrooms.

It took two years to design the building, which ultimately comprised 114,000 square feet with 220 classrooms in a four story building, 305 feet from north to south, 205 feet from east to west; and over a mile of hallways in the building!

I had insisted, and the committee agreed, that the basic design should be a beautiful building; that it should face on 15th and should follow the architecture of the campus—modified Tudor Gothic. One professor claimed that he thought modified Tudor was more expensive to build, but I reasoned that once built it has much less maintenance than wood or a more temporary type of construction.

I suggested also that the 85 foot tower should be a modified copy of the tower at Magdalen College at Oxford. It is one of the historic towers in all collegiate architecture of the world. Many centuries old, some very unusual traditions have grown up around the tower. One tradition is that on the morning of May 1 each year the choir ascends the stairs and sings a hymn...
to May in Latin! I was hoping that some tradition such as this might ultimately grow at UPS but it has yet to come about. I was also in hopes that we could mount a very fine flag pole on top of the tower, but when I learned it would cost something over $5,000 additional, it was deleted along with other extras that we did not need at the time.

Originally, a parking lot was planned in the U-shape facing Union Avenue. The committee struggled with the difficulties of ingress and egress and the limited number of parking spaces available there. In our discussion, I suggested that we eliminate the parking area because of the problems and locate a beautiful fountain there. I remember Bob Sprenger, particularly, liked this idea.

After two years of preliminary work, the design was finalized and presented to the Board of Trustees. Trustee Don Jaenicke served as Chairman of the Sub-Committee for the Science Building. The trustees discussed the needs, the future of the University and whether the expansion was justified. When these questions were answered, the Board of Trustees authorized negotiations with the Federal Government concerning funding. I leaned very heavily on Richard Dale Smith who had such outstandingly fine political connections with both Washington Senators and also with government liaison people in Seattle. Dr. Gerard Banks, who was financial vice president of the University, was exceedingly adept in working with the Federal people and the proper documents were prepared. Since we had begun work while
we were designing the building, we were already dealing with the Federal Government.

In 1963, the Pacific Northwest Conference of the United Methodist Church had a financial campaign called the Urgent Needs Appeal. The University asked to be included in this campaign, and the members of the Conference voted to allocate $400,000 toward the science building, which amount was subsequently paid to the University for the science building from funds collected in the campaign.

On April 22, 1965, the University signed a loan agreement with the Federal Government for a loan of $1,027,000 at 3 3/4 per cent interest amortized over forty years. The University agreed to raise this amount of money each year to pay for the loan and the amortization. It was different from our other loans which had income from usage, such as the food service and dormitory space, because the interest had to be raised each year with the other financial obligations of the University. Later additional loan money was received from the Federal Government so that our total loan amounted to $1,640,000 along with a grant from the Federal Government in the amount of $1,217,898. The total funding for the building was $3,818,892, not counting the land which was owned free and clear.

Several times in our dealing with the Federal Government we had to make adjustments. For instance, in justifying our asking, we had to submit a list of the courses that would be taught in the building and a list of the laboratory courses for which space would be needed. The Dean listed some
of the liberal arts courses, such as English and religion. Immediately, we received word from the Federal Government that no courses in religion could be taught in the building as long as the government loan was effective, as the separation of church and state would have to be followed. The Dean immediately readjusted the scheduling of classes, deleting those pertaining to religion so that the schedule met fully with the stipulations of the loan.

Fountain is Funded

In the basic design of the building, when we eliminated the parking area in the inner circle, we made plans for a fountain. I took the design of the fountain over to the Seattle office of HEW and talked with Mr. Howard Games, the field engineer, about it. The estimate was for $50,000 for the walks, trees and the fountain. Mr. Games said he was very pleased with the design and hoped it could be included as a part of the total project. Though he had some reservation, he said he would submit the request to Washington, D.C., and let me know their decision. Later, he wrote to me that the fountain was considered to be extraneous and it would not be possible for us to have it as a part of the funded grant.

I then turned to Harry Brown, who had asked me in 1942 what was the most onerous thing for which to raise money and I had told him at that time it was for sidewalks and paving, which we needed desperately. There were wooden sidewalks and the only paving was found in Sutton Quadrangle in front of Jones Hall. He set up the Harry Brown Roads and Paths Fund, which over the years has provided all of the walks and paving for the University.
In recent years, he has contributed enough to endow this fund which will produce about $8,000 to $10,000 a year for the beautification of the campus. His family has helped in this Fund, also.

Harry Brown and his family decided to underwrite the fountain in the science quadrangle. The fountain was designed by Silas Nelsen after a basic design of one in the plaza in Zurich, Switzerland. It is 74 feet across and has a main stream that projects some 20 feet high. The height is determined by the wind velocity regulator on top of the roof. There is also a jet of water that falls back into the saucer and then into the large pool area. We did not anticipate that this would become a wading pool for the neighborhood children on very hot days!

On April 21, 1968, at the time of the building dedication, we had a dedication ceremony for the Harry Brown Family Quadrangle. All of the members of the Brown family, including Mr. and Mrs. Brown, their children (most of whom attended the UPS), their grandchildren and some of their great grandchildren were present. Somewhere in the archives there is a picture of all of them pulling on the cord for the unveiling of the plaque naming the Harry Brown Family Fountain and Quadrangle.

The fountain has been a thing of beauty ever since it was constructed. In the wintertime, when it becomes cold, the water from the fountain creates a winter wonderland with its thousands of icicles reflecting the beauty of the sun.
Naming the Building

On February 11, 1966, the editor of the Trail, Dennis Hale, a senior, wrote an editorial suggesting that the new science building be named for the President. This suggestion was especially meaningful because about this time tensions began to arise on the 2600 university campuses in the nation between students, faculty and administration.

The editorial is quoted, as follows:

SCIENCE COMPLEX WILL ENHANCE SCHOOL'S IMAGE

Twenty months hence the final cornice will be cemented on the $3 million plus science complex making UPS 25 buildings richer than it was when the U.S. entered the European Theatre at Casablanca. All this building has been completed during Dr. R. Franklin Thompson's reign as UPS president. Next year Dr. Thompson begins his 25th year as president of this institution.

There is no way to repay Dr. Thompson for his decades of service to the university. There is no adequate reward for the tremendous growth--curricular, intellectual and physical--which he has fostered. There is only Dr. Thompson's deep gratification and delight at having welded UPS into a first class liberal arts institution.

Some token of recognition should be given. Tokens are fragile things that obtusely mirror the surface of human accomplishment. But then, it's not the token, but the intent behind it, that's important. Naming the science building the Thompson Science Complex would be such a token.

With the science complex the university ascends to a new level of sophistication. Despite many of our protests, this IS a scientific age and a scientific century. Dr. Thompson is largely responsible for making the university atune with the changing times.

Mr. Hale's suggestion was accepted by the students, the faculty and the administration, and on the 14th of May, 1966, the Board of Trustees
voted in favor of the motion made by Gerrit Vander Ende and seconded by Norton Clapp to name the science complex for Dr. R. Franklin Thompson. The President, overwhelmed by the suggestion, replied with genuine humility and great appreciation.

We broke ground for the building on November 29, 1966, opened bids on November 23, 1966, and construction started early in December of 1966. Macdonald Building Company was awarded the contract about a week after the bids were opened.

The first classes were held in the building on January 3, 1968. The Federal Government inspected the building quite often during construction and a final inspection by the Government was made on January 23, 1968. The building was insured for $4,929,458, including $235,000 worth of new equipment which was purchased to furnish the building.

Dedication Ceremonies

The dedication ceremonies began on Friday, April 19, 1968, with a banquet in the Great Hall of the Student Center. Dr. Loren C. Eiseley, University Professor of Anthropology and the History of Science at the University of Pennsylvania, was the speaker and his topic was, "Man: The Listener in the Web."

The program continued on Saturday, April 20, with a special open house in the morning for high school instructors and students, followed by a luncheon featuring our Washington Senator, Henry M. Jackson. In
the afternoon, we had a panel discussion by three distinguished alumni of the University: Dr. Charles B. Arnold, Jr., Public Health Administrator at the University of North Carolina Population Center, speaking on "The Individual and the World Population Crisis," Dr. Howard S. Irwin, Herbarium Administrator, New York Botanical Garden, on the topic, "A Botanist Looks Ahead," and Dr. Ronald Rau, Chairman, Department of Physics, Brookhaven National Laboratory, on the topic, "Science in the University." The discussion was moderated by Dr. Robert Sprenger, Director of the Natural Science Division at the University of Puget Sound.

In the evening on Saturday, Dr. Philip H. Abelson, Director of the Geophysical Laboratory at the Carnegie Institution of Washington, gave an address on the subject, "Can Man Learn to Live with Technology?"

A formal dedication convocation was held on Sunday, April 21, in the Memorial Fieldhouse. The University of Puget Sound Symphony Band played for the academic procession for which Dr. Leroy Ostransky had composed "Academic Memorial". The Reverend Troy Strong, District Superintendent of the Columbia River District and a University alum, gave the invocation; The President gave a welcome and made introductions; Senator Warren G. Magnuson introduced the featured speaker, Dr. Donald F. Hornig, Special Assistant to President Johnson for Science and Technology, and he spoke on, "Science: Promise and Peril."

Honorary Doctorate degrees were given to Philip Hauge Abelson
(Doctor of Humane Letters), Loren Corey Eiseley (Doctor of Science) and Donald F. Hornig (Doctor of Science). Alumnus Cum Laude Awards were presented by Gerald Hulscher, President of the Alumni Association, to Dr. Irwin, Dr. Arnold and Dr. Rau, our alumni panel for Saturday afternoon.

From the convocation in the fieldhouse, the guests all proceeded over to the Harry Brown Family Quadrangle for the building dedication ceremony.

Mr. Norton Clapp, Chairman of the Board of Trustees, gave the welcome and made introductions. Remarks were made by U.S. Representative, Floyd V. Hicks, followed by remarks by the Chairmen of the science departments at the University of Puget Sound, Dr. Robert Sprenger, Dr. Gordon Alcorn, Dr. Martin Nelson, Dr. Norman Anderson and Professor John Lantz. Mr. Clapp gave a dedicatory address and Dr. Sprenger spoke on the dedication of a president. Dr. Thompson in his acceptance speech said:

The honor which has come to the University of Puget Sound today is the sum total of the dedication of many people through many years. The University is more than buildings--it is the dedication of people--faculty, students, trustees, and administrators. I would be very callous indeed if I did not say I am deeply touched, honored and very humble that this building should be named in my and my family's honor. The years at the University of Puget Sound have been interesting and fruitful. Whatever service I may have rendered to the University has been the result of the companionship, inspiration, and full cooperation of a wonderful family who shared the joys, the sorrows, the planning, the dreams, the worries, and the heartaches through the years. To them, I shall ever be grateful.

For years, the Science faculty has planned this edifice. When the Trail Editor of two years ago suggested the naming in a lead editorial and the trustees subsequently took such action, I was deeply touched and shall always be so.
May I have the personal privilege, Mr. Clapp, of speaking for just a brief moment on three words. The first is Appreciation. Today, we are deeply appreciative of all those people who in the past and present have worked to build this University--dedicated faculty who have touched the lives of countless students--trustees who have planned the long-range development of the University and structured its growth--alumni and students who graced these halls and who are the real reason for this University's existence--business men and individuals who shared their resources with the University to make it grow.

The temptation is to name individuals and to sing their personal praises, but these people are legion and our thanks are everlasting.

The second word I should like to speak about is Affirmation. For four score years, this University has touched the lives of students. It has given them values, insight, direction and horizons. I should like to reaffirm the basic philosophy of the University of Puget Sound. More than ever, it will be geared to excellence, to the highest quality of education possible, to stimulating academic excellence, the ability to think constructively and to lead.

A liberal arts university in this age finds itself in a paradox. In the use of human intelligence and the power of reason, it is both the creator and destroyer of human ideas and values. In many ways, before anything new can arise, the old must be cut down, and the most potent means mankind possesses for this process is the uninhibited use of the sharp cutting edge of critical reason and the scientifically controlled imagination.

Universities are founded on the faith that the destruction they bring to the old practices, ideas, and values, will ultimately be more than replaced by the growth of new, more powerful and perhaps also more precarious orderings of human activity.

Often the constructive, slower and longer-range improvements in man's ability to cope with the world which free exercise of reason permits are less obvious than the short-range destruction caused by this same free exercise of the human mind and reason.

This building will know great teaching. Unborn generations
will walk these halls and envision the good their dedication will do for mankind. In this moment of history, we stand on the threshold of new powers, new desires, new processes, which have opened new horizons yet undreamed by man.

It so happens that the history of man's discovery and use of atomic energy illustrates the paradox before us. Just as the atomic bomb and its still more destructive progeny threaten total eradication of human life, so also the enlarged energy supply created by atomic reactors lifts the ceiling on what is really possible.

Thanks to scientific research, to the discovery of atomic energy, the end of poverty, no less than the end of humanity, now seems a real possibility and within the time span of a few human generations.

Thus, we are aware that insofar as the University is truly dedicated to the life of the mind, it is dedicated to calling into question the way things are. By so doing, professor and student threaten ordinary, unthinking human behavior, just as atomic destruction threatens us all. But just as atomic power has begun to come into its own, so new truths eventually generate fresh values and rules of conduct that will be better in some meaningful sense of the term than behavior based upon the exploded myths and erroneous judgments of the past. This men of intelligence must believe. This is our heritage and our hope.

This leads me to the third word which is Anticipation. I am sure the greatest age for the University of Puget Sound is ahead of us. This facility provides one more stepping stone in the development of the total University. With this building, we have turned a corner. Our concentration now will be upon enriching, strengthening and developing in every way possible the academic progress and programs of the University. The glory of a great university is that it is stronger and longer than any one generation, any one idea, any one philosophy. Yet through all generations, it marches on giving values, insight, and loving direction to all who will be challenged.

So today, we appreciate all those who have built this University, we reaffirm the true causes and ideals of the University, and we anticipate its future, for in the words of Browning, "The best is yet to be."
Again, Sir, my heartfelt gratitude to all those who made this honor possible.

Closing the ceremonies, Mr. Dean Henry, President of the Associated Students of the University, accepted the building for the students and presided at the unveiling of the cornerstone.

The public was invited to tour the new science facility during the open house that followed.

In recognition of former faculty who had been very active in the science departments over the years, the Herpetology Room was named for Dr. James R. Slater on the recommendation of Dr. Gordon Alcorn. Dr. Slater had been for many decades a professor of biology and taught many outstanding students who went on to international fame. A chemistry seminar room was named for Dr. Philip R. Fehlandt. The Mathematics Library and Seminar Room was named for Dr. Arthur W. Martin who was chairman of the Mathematics Department for many years. The Biology Library and Seminar Room was named for E. A. Kitchin who gave his collection of birds' eggs to the University through the suggestion of Dr. Gordon Alcorn. This was really the beginning of the University's Museum of Natural History which is also located in the Science Complex. Many skins and mammals were contributed to the Museum so that it is reputed to be one of the finest west of Chicago and north of Berkeley. The Museum has been a part of the life of the science departments at the University and has had many outstanding trustees as well as other interested in its development.
The Gology Library and Seminar Room is named for Frederick A. McMillin. The Physics Library and Seminar Room is named for Dr. Raymond S. Seward who was head of the Physics Department for many years. Later, Dr. and Mrs. Seward gave a very large gift to the University for one of the dormitories and it was named for them. Mrs. Seward had been secretary to President Todd for many years and then secretary to President Thompson. Both of them were very dedicated and devoted people.

Mr. Charles Holtzinger, an outstanding orchardist from Yakima, served on the Board of Trustees for many years and his son, Charles, Jr., an alumnus of the University, made a very sizable contribution to the cost of the science building and one of the auditoria was named for his father.

The South Auditorium was named for Ben and Slava Heuston by their two sons who had graduated from the University of Puget Sound, and the Chemistry Library was named in honor of Theodore Bankhead, an outstanding alumnus of California.

The Thompson Science Complex stands as one of the outstanding buildings on any private university campus on the West Coast. It was the result of the careful work of a fine team--professors, designers, trustees and administrators--bringing to reality one of the dreams which every university president has had in the history of the University.

When the students use the 1850 student stations, they are being
trained for the day in which they live, for the service which they can give, and it stands as a tribute to the foresight and dedication of all who made it possible.

R. Franklin Thompson
November 6, 1978
THOMPSON HALL HIGHLIGHTS

R. Franklin Thompson Hall is beautiful, modern, and BIG. In fact, it is by far the largest building ever built on the University of Puget Sound campus. There is much to see as you walk through this fine new building. But there is also much that ordinarily escapes the eye. Because of this, we thought you would enjoy having some factual material about the building to read and take home with you.

The building is named after Dr. R. Franklin Thompson, president of UPS. During his 25 years as president, Dr. Thompson has pushed through a building program that is the envy of many an institution of comparable size. The completion of the new science facility is the crowning achievement of this program.

Thompson Hall took two years to design and plan and two years to build.

The building cost $4 million, including contents.
Of this amount, approximately one-third came from government matching funds, one-third from a federal loan, and one-third from donations.

The building has 220 classrooms on three floors.
The tower rises four stories above the rest of the building (85 feet), making it the highest point on campus.
The U-shaped building measures 305 feet from north to south and 205 feet from east to west.
There are 11,000 panes of glass and a mile of hallways in the building.
The total floor space is 114,000 square feet.

Nelsen, Krona and Zeigler of Tacoma are the architects.
The style of architecture is Tudor gothic.
Thompson Hall can accommodate 1,850 students at once.
It has three auditoria, the larger with a capacity of 200 students and the others with a capacity of 100 each.

Howarth Hall, home of the sciences at UPS since 1924, will be remodeled and used for other classes.
Classes were first held in Thompson Hall January 3, 1968.
The dedication program is scheduled for April 19-21.

Cost per square foot is $31.

There are approximately 600 stations or seats in laboratories.

The fountain in the quadrangle measures 74 feet in diameter.

Special features include:
a greenhouse, X-ray and radiation equipment; electronic microscopy, a science shop equipped with tools for metal, wood and machine work; and a seismic recording station. Future plans call for a weather-recording station and a telescope atop the tower.

The geology department occupies the first floor south with chemistry on floors 2 and 3 north, biology on 2 and 3 south and physics on first, north.
DEPARTMENTAL INFORMATION

Sciences housed in the new building include geology, biology, physics, and chemistry. The math department also calls Thompson Hall home. The east wing (the closed end of the "U") contains common use laboratories and auditoria along with offices.

BIOLOGY—The department of biology provides training for those students who plan to enter some of the professions such as medicine and dentistry and for those who, upon completion of the baccalaureate degree, plan to do graduate work for advanced degrees.

Our staff members are especially trained in anatomy and physiology, botany, cell physiology, ecology, field biology, invertebrate zoology, mammalogy, microbiology, mycology, and ornithology. A graduate program leading to a master's degree is offered in each of the above areas.

The department has excellent facilities for research and teaching, an unusually fine natural history museum, and in the fall of 1968 we will have an electron microscope. In addition, we have a radiation laboratory and X-ray equipment. For students wishing to work in botanical areas, a modern greenhouse is situated on the roof space of the new science complex.

PHYSICS—The physics department offers a four-year program designed to qualify students for further graduate study, for scientific work in government or industry, and for high school or college teaching.

Future plans include acquisition of an electronic computer. Special equipment in the physics department includes a neutron howitzer, nuclear detection equipment, microscopes for scanning cosmic ray tracks, spectographs, pulsed and continuous lasers, electron diffraction apparatus, gravimeters, electronic equipment, and desk calculators. A 12-inch reflecting telescope is to be mounted on the new building. UPS has access to a 25-inch reflector telescope operated by the Tacoma Astronomers, Inc., southeast of town. The department hopes to obtain a small particle accelerator for low-energy nuclear physics experiments. The university has a research institute which supports small research projects, partly through N.S.F. grants.

MATHEMATICS—The mathematics department offers a program leading toward a major in math with supplemental courses in the sciences, business administration, psychology, and sociology (statistics), as well as a math major preparing one for a career in math or graduate study in the field. A major tailored to the needs of math teachers is also offered.

CHEMISTRY—The chemistry department is professionally accredited by the American Chemical Society. The curriculum provides training for those who intend to enter the profession of chemistry after graduation or as a background for those planning to take graduate work.

The five staff members have respective training in the principal areas of chemistry: inorganic, organic, analytical, physical, and biochemical. A graduate program at the master's level is also offered with appropriate research offered in each of the above areas.

The departmental laboratories are equipped for modern instrumentation including X-ray diffraction, infrared visible and ultra-violet spectrophotometers, gas chromatographs, and demonstration nuclear magnetic resins and spectrometers. Well-equipped laboratories are provided for glassblowing and radiation studies as well as a shop for machine, metal, and woodworking. Several research laboratories provide space for undergraduate, faculty, and graduate student research projects. A departmental reference library provides access to journals and
other important reference works.

GEOLOGY--The modern geology teaching and research facilities of the University reflect a long and continuing support in this area of science. The University was the first private institution in the Northwest to offer a baccalaureate degree in geology. The department has a staff at the present time of two. There are approximately 20 majors.

During the past 40 years, the department has acquired extensive collections of minerals, rocks, and fossils—chiefly from the Northwest, although others are from other parts of North America and Europe. Of particular interest is a large collection of uranium-bearing ores from the Colorado Plateau donated by a former student. The department is a depository for U.S. Geological Survey topographic maps of 11 western states and Antarctica. In addition, there is a large collection of geologic maps from North America, Europe, and Asia.

Rock preparation equipment includes a complete Ingrahm-Ward thin section laboratory plus auxiliary rock slabbing saws and grinding wheels. Other equipment includes research stereoscopic and petrographic microscopes and facilities for complete analysis of sediments and sedimentary rocks.

Current research areas involving faculty and students include tertiary paleobotany, quaternary geology of the Northwest, and modern sedimentation processes of Puget Sound. In addition, the department is well known, both locally and nationally, for its role in earth science education.

Further questions about specifics of departmental policies, curriculum, and facilities may be directed to the following departmental chairmen:

Biology--Dr. Gordon Alcorn
Chemistry--Dr. Robert Sprenger*
Geology--Dr. Norman Anderson
Physics--Dr. Martin Nelson
Mathematics--Mr. John Lantz

* also chairman of the Natural Sciences Division at UPS
With the coming of the large enrollment of GI's after the war, it became obvious that we needed a much greater facility for the teaching of science. We actually started talking about it in about 1960. I had informal discussions with the science faculty, particularly Dr. Sprenger, Dr. Alcorn, and Dr. Martin Nelson, as well as Dr. Raymond Seward, concerning the kind of facility which they would like and which would ultimately be built on the campus.

Dr. Robert Sprenger, who was one of the most outstanding professors we have ever had at the University, made it a great responsibility of his to study the best science facilities which were being constructed and also those which were being recommended by the accrediting association. He would report to me at least once a month as to the progress he was making. He also met with other members of the science faculty to stimulate their thinking concerning the possibility of the new building.

This was a time in the history of the country when there was a great fear of the atomic explosions. One Trustee had his house constructed with a sub-basement made into a bombproof shelter with proper facilities, emergency lighting, extra food storage, etc. to withstand any possible bombing. This was a part of the psychology of the moment. The University was approached often by the civil defense leaders to see how the University could correlate with the Civil Defense program in case of disaster. We were told that we would be the collection center
for all the people in the north end of the city in case there was any bombing of the Bremerton navy yards, Boeing, or other facilities. Because of this, certain concentrated foods and adequate water supply was stored in the basement of Howarth, Anderson, and other buildings to take care of the needs of a major population.

In the early part of the 1960's there was great fear among the military leaders that the United States would be bombed with nuclear or atomic bombs and there was a very definite program on the part of Congress to make people aware of the danger and also to provide for their protection.

I went to a conference with Brig. Gen. Ensley Llewellyn (an alumnus of the University of Puget Sound) on April 20, 1962, concerning civil defense and the University of Puget Sound. At that time, we were informed that Congress had allocated for civil defense $700,000,000; that $425,000,000 was for the construction of shelters at various places and that it was to be allocated at the rate of $22.50 per square foot or $25 per shelter space, and they figured $10 per person as a square foot unit. This money was to be used for multipurpose use and one-fourth of a square foot was to be allocated for storage of food and supplies by the government, which were to be used only in case of a disaster.

Following the meeting, we were to have the architect make a detailed study of the method of construction and have the study available to Civil Defense, Sitts and Hill or Whitacre
Engineers of Tacoma who had been approved by Civil Defense as advisors in this kind of construction. They were in hopes that the shelters could be ready by January 1, 1963 and that 50 percent of the cost of the shelters and multiple-use structures would come from Civil Defense.

I then called the science faculty together and told them it appeared that we might be able to get a very large sum of money for the construction of shelters in a multipurpose building if we adhered very closely to the suggestions made by Civil Defense.

On June 12, 1962, I received a letter from the State Director of Civil Defense saying that he was absolutely sure that incentive money could be available and that we should work with the U. S. Army Corps and the Navy Bureau of Yards and Docks in planning the new building; that the University of Puget Sound was first in line for it, particularly if it would construct the underground science building as projected for January 1, 1963. He was quite sure that we could receive 50 percent of the cost of the building and that this would provide shelter for 4,000 to 5,000 people and it could be used not only as a shelter but as a hospital and as a community kitchen, if necessary. He thought at that time we could get $25 per square foot for the construction.

I had asked Richard Dale Smith to act as representative from the University with Civil Defense and he served very well in this capacity. He was very much aware of the political scene
both state and national, and he alerted Tom Swayze who was involved in the political affairs of the State; Thor Tollefson who was a Republican representative, and Senators Magnuson and Jackson. Also, Governor Rossellini was very much interested in the possibility of the money coming to us on many occasions, he told me, "You know, Doctor, I am an alumnus of Puget Sound and very proud of it." He did use his Governor's office to get an allocation for us, but Congress was very reticent about appropriating the money which had been allocated.

While the political aspects of this were evolving, I called the science faculty together on many occasions to discuss the possibility of building the science building on the north side of Sutton Quadrangle with a series of laboratories built underground which would be connected with Howarth Hall, Jones Hall, and the above-ground section of the new science building. We spent a great deal of time on the plans and there were many sets of preliminary plans drawn.

The plans called for construction of a facility 300 feet long, 250 feet wide, with a ceiling four feet underground. The ceiling was to be of very strong reinforced concrete covered by four feet of earth. At first, the science faculty appeared to be quite enthusiastic about it, and we discussed the location of the various departments and eventually had a rather satisfactory and workable set of plans. I remember giving the plans to the science faculty on Friday and saying that, in order to get the asking to the Civil Defense and Mobilization Department for a minimum of which was less than 50 percent of the $1,500,000 cost of construction, we would need to work rather rapidly.
Dr. Robert Sprenger was Chairman of the Science Committee but each science faculty member was asked to carefully study the plans and give a written analysis concerning his particular area.

I had taken a set of plans home with me to study over the weekend. On Monday morning, when I arrived at my office about 7:45, the science faculty to a man was standing outside with its rolled-up plans. Dr. Sprenger and I looked at each other and I said, "Bob, did you come to the same conclusion I did?" He asked, "What was that?" I replied. "Well, this underground plan is just not feasible. It would be very expensive and it is not a good working plan." Seemingly, there was a sigh of relief from all of them and they said they had come to exactly the same decision - that it was not feasible for many reasons - the circulation of air, the exhausting of fumes from the science laboratories, especially chemistry; the fact that all liquid waste would have to be elevated by pump some 40 feet to get it into the sewer system; The fact that we would have to have an underground power supply in case the main power failed; and for the amount of advantage which we would get from the allocation of Civil Defense funds, the disadvantages of impracticality and added expense were so unusual that the science faculty hoped we would not spend any further time on it. I agreed wholeheartedly.

I brought out a map of the campus and we talked about the possibility of moving the proposed science complex over to Union Avenue and locating the proposed School of Business building.
in the area of the north side of Sutton Quadrangle. Howarth
Hall then could be used for whatever disciplines would need
space, which, at that time, in my thinking would be the School
of Education. In this way, the School of Business would be
located on the north side of the Sutton Quadrangle, liberal arts
study would be in Jones Hall, and the School of Education would
be located on the south side of Sutton. By using this type of
a plan, we could use the entire area facing Union Avenue for the
science building where there was much more space for a beautiful
building.

After some discussion with the science faculty, there
seemed to be unanimous agreement except for one professor who
did not particularly want to cooperate with his department.

I then strongly suggested that we terminate our
relationship with the Civil Defense group. Rather interestingly,
shortly after we had come to our decision that we would no longer
try to work in a special defense and mobilization program, we
received a letter from Mr. Frank S. Evans stating that the asking
for a grant had been denied. Evidently, the central construction
program of Civil Defense and Mobilization was not underwritten to
the extent that President Kennedy had hoped and that the Civil
Defense people had hoped and it was not possible to subsidize
the building of shelters, the main theory being that they would
take over shelters that were already constructed and would work
out the details with the existing institutions so it would not
be necessary for them to build new ones.
In 1967, a survey was made of Pierce County locating 1197 areas for protection of people at the University of Puget Sound. A man by the name of Frank S. Evans was the Shelter Officer in Pierce County and Mr. H. E. Link was State Director. On January 20, 1967, Mr. Link wrote me that he would like very much to have the University of Puget Sound take the lead in the designation of shelter space, particularly as it related to protection from radioactive fallout and from nuclear bombing. The areas at the University were to be marked and signs placed at strategic spots, and the shelters were to be stocked with food and water and with radioactive detection equipment. There was particular emphasis on the fact that the design of any new buildings should be done in correlation with the Civil Defense and Mobilization Bureau, both locally and at the State level.

It was a sort of "off-again, on-again" situation. The Civil Defense people kept writing and calling us, saying that we had the most ideal location for the north end of Tacoma and they wanted us to designate Collins Library, Men's Group Housing, the Student Center and the Music Building as shelters, with particular emphasis on the tunnels in the Men's Group Housing which they thought would be the most ideal kind of shelter. However, this was to be done without remuneration; there would be no maintenance cost allocation, and we would be responsible for keeping the stored material in good order.

Brig. General Llewellyn was a very loyal alumnus of the University and did his best in trying to secure the allocation from the Civil Defense appropriations.
This Civil Defense inquiry of 1962-63, however, was the beginning of serious thoughts in the minds of the science faculty concerning the possibility of a science building. We knew that the laboratories had been so crowded that we had only been able to allocate two-hour sessions of labs in chemistry, biology and in other classes due to the heavy enrollment and the fact that our facility was limited. This made it mandatory that we begin to think in terms of building a science building at the earliest possible moment.

Out of weeks and years of planning, it was evolved that we should build the building in a U shape. That we should have an auditorium, seminar rooms, classrooms, student laboratory stations, etc. It was also determined that we should have one wing for biology, one wing for physics, a chemistry section, and a central section for mathematics. There should be some area for geology and there should be extra classrooms so other disciplines of the University could meet in the building.

While planning the science complex I was asked to be one of the workshop leaders for University presidents which was meeting for two weeks at Harvard. They had one leader who had been a president for seven years, one for fourteen years, and I was the one who had been twenty one years as a University President. We were to meet with the new presidents who were just starting their careers. While there, I hired a car and went through the Universities in the Boston area. As I recall there were some sixteen of them. I was very much interested in Baker Hall at Harvard. It had a
series of classrooms in the shape of small auditoriums and there were some that had one hundred seats, some that had three hundred seats, and some that had seven hundred seats. I asked the dean which one the professors and students liked best. He said they liked them all equally and they were all equally scheduled. I asked some of the students and they said they liked the three hundred and one hundred best but did not like the seven hundred ones. Then I remember one Friday afternoon when I was making my tour around the buildings I asked the maintenance men which one of the auditoriums was liked best. They said the one hundred ones were scheduled constantly, the three hundred ones were scheduled quite well but the seven hundred were not scheduled anymore than had to be because the professors did not like them and the students did not like them. Finding out this kind of information also in other schools, we decided we would have one auditorium which would be for about three hundred and two which would seat one hundred each. These are the ones that are in the main part of the science complex.

When Silas Nelson, who was the architect, got through drawing the plans, there were 220 rooms, 114,000 square feet, 11,000 panes of glass, 1850 students stations, 550 classroom student stations, and there were seminar rooms, 300 laboratory stations in one area and 600 laboratory student stations in another. The architect projected that it would take two years to finish the building.

In the meantime, I had gone to Washington, D. C. and
was able to get an outright government grant of $1,400,000
and a loan of $1,400.00
to be paid at the rate of three percent interest to be amortized
over forty years. This amortization at very reasonable interest
has been going on since 1968.

I was very greatly surprised and very humble and very
much touched when the Puget Sound Trail of February 11, 1966
came out with an editorial written by Dennis Hale, who was
Editor at that time. The headline said, "Science Complex
Will Enhance Schools Image" and then it went as follows:

Twenty months hence the final cornice will
be cemented on the $3 million plus science
complex making UPS 25 buildings richer than
it was when the U.S. entered the European
Theatre at Casablanca. All this building
has been completed during Dr. R. Franklin
Thompson's reign as UPS president. Next
year Dr. Thompson begins his 25th year as
president of this institution.

There is no way to repay Dr. Thompson for
his decades of service to the university.
There is no adequate reward for the tremen­
dous growth - curricular, intellectual and
physical - which he has fostered. There is
only Dr. Thompson's deep gratification and
delight at having welded UPS into a first
class liberal arts institution.

Some token of recognition should be given.
Tokens are fragile things that obtusely
mirror the surface of human accomplishment.
But then, it's not the token, but the intent
behind it, that's important. Naming the
science building the Thompson Science Com­
plex would be such a token.

With the science complex the university
ascends to a new level of sophistication.
Despite many of our protests, this IS a
scientific age and a scientific century.
Dr. Thompson is largely responsible for
making the university atune with the chang­
ing times.
I was very humble when I read that because Dale Hale was the son of one of the Chief Justices of the Supreme Court and had been an outstanding leader on the campus. He had been very objective in his appraisal of the Administration and his appraisal was most touching.

I was even more touched when the Board of Trustees, taking the lead from the Trail, at their next meeting voted to name the building the R. Franklin Thompson Hall. I was especially pleased at this because, like my predecessor, Dr. Edward H. Todd, I felt a very great need for the adding to financial assets to the University. The fact that one became known for a reputation as a money raiser rather than educator I know bothered Dr. Todd as it did me. My main desire has been to give an excellent education to every student generation. I was more eager to be known as an educator than as a money raiser but both had to be done in the business of University administration.

We watched with great interest the growth of the building and we often conferred with the architect to be sure that there was a certain amount of beauty as well as practical aspects to the entire building. The tower is a modified copy of the Magdalen tower at Oxford which stands by the river Isis. It has the four pointed spires on the parapet and has been the model for gothic tudor architecture through the years. Princeton University had such a love of it that it copied the tower completely. Our tower is made of bricks rather than carved stone although it
carries out the general idea being a modified copy of the Magdalen Tower.

I kept in close touch with the faculty, particularly Dr. Robert Sprenger and Dr. Gordon Alcorn as the plans developed and asked them to make a very careful survey of the new equipment which was needed. This was a chance for each department to bring its equipment up-to-date and also develop any new techniques for courses which they felt they needed as they moved into the new building.

In the original drawing the architects had placed a parking area in the U shape part of the building. As we discussed it as a Planning Committee, it was said that probably the sixteen or twenty cars that could be parked in there would be a traffic problem as well as a difficult situation to control. Out of that grew the suggestion that we landscape it and put in a beautiful fountain. The fountain was drawn by the architect and is a modified copy of one of the ones in Zurich, Switzerland. It is 74 feet across. I remember when Mr. Harry Brown said that the Brown family would pick up the cost of the fountain and the landscaping. It was done and we had the entire Brown family come and pull the rope to unveil the plaque recognizing the fact that the fountain was part of the Harry Brown Family Roads and Paths Fund and used for the beautification of the campus. Again, trusting my memory, it seems that the fountain cost from between $45,000 and $50,000. It has been a thing of beauty ever since and I did not realize the children of the area would be using it as a wading
pool on hot summer days nor that photographers would have a field day taking pictures of it when it was covered with ice on the rare occasions when it gets that cold here.

The science faculty suggested that we have a very large dedication ceremony to open the new building. This ceremony was held on the 19th of April, 1968. Dr. Gordon Alcorn and Dr. Robert Sprenger were chairman of the Committee and they suggested we get Dr. Loren C. Eisely, who was professor of Science at the University of Pennsylvania, come as the main speaker. It was most interesting since Dr. Eisely was a classmate of Mrs. Thompsons in University Place in Nebraska when they were in high school. Some of the others who were panel leaders were Dr. Charles Arnold, who was once University of Puget Sound student body president and a professor of demography in Canada; Dr. Howard Irwin, a graduate of the University of Puget Sound who had distinguished himself as director of the Zoological Gardens in New York City. As a matter of record, once I had hired him to come and be one of the professors in Botany. After he had signed the contract with us he called me and said, "Dr. Thompson, I would like to discuss very frankly with you a situation which has arisen." I said, "What is it Howard?" He said, "I have been offered a contract to direct the New York Botanical Gardens which has world-wide recognition. If you will release me from my contract, I will accept that position. But, in my heart I will always have a warm spot for my alma mater." Inasmuch as it was such a major offer, there was nothing to do but wish him well and say that he hoped he would remember the University of Puget Sound with kindness. The third man on the panel for the
dedication was Dr. Philip H. Abelson, who was director of geophysical laboratory at Washington, D. C. for the Carnegie Institute. Sen. Magnusson came out to be a part of the special dedication and he was able to secure for us Dr. David F. Hornig, special scientific assistant to President Lyndon Johnson at the time. In the convocation we gave the men above named honorary degrees. Mr. Norton Clapp was a part of the ceremony. In his dedicatory statement, Mr. Clapp said, "Dr. Thompson has built a major building each year since the war and he was able to put $500,000 worth of new equipment into this building." Dr. Robert Sprenger spoke on the "Dedication of a President." Mr. Clapp spoke on the "Dedication of Greatness in Education." Men from various aspects of the University spoke. There was Gerald Hulscher, President of the UPS Alumni Association; from the Methodist clergy was Dr. Troy Strong, an alumnus; and Mr. Harry Brown spoke on the Harry Brown family and their very great appreciation of the University and the fact that he was happy that the Brown Family could furnish the fountain.

Thompson Hall has provided a very outstanding facility for students since 1968. It also has created a new entrance to the campus. You can now come from the west as well as from the east to fact the campus. The new tower is looked upon as one of the distinctive features of the community and as a symbol of the University. The building has rendered great service to the University and it continues to be one of the finest of its type of any campus.

July, 1980