


Figure 5.4: The three male
morphs of Uta stansburi-
ana, which exhibit different
throat coloration and mat-
ing strategies, are shown
to illustrate fitness degen-
eracy. Arrows indicate
outcompetition for mates
[Sinervo and Lively, 1996].
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Chapter 6

Discussion

In Chapters 3, 4, and 5 we have toured through a sprawling menagerie of causal factors associated with

evolvability. These factors included aspects of internal structures of biological organisms (e.g. modularity),

the processes that give rise to the phenotypic structures observed in mature biological organisms (e.g. ex-

ploratory growth), the constitution of the environments biological organisms inhabit (e.g. fitness degeneracy),

interplay between the structure of biological organisms and the environment (e.g. plasticity), and specific

evolutionary processes through which complexity is thought to emerge (e.g. duplication and divergence).

This expedition traveled through a wide range of explanatory scope — we discussed causal factors related to

the immediate physical forms of biological organisms (Chapter 3) and causal factors related to overarching

design patterns associated with biological organisms (Chapter 4) Finally, Chapter 5 reviewed causal factors

rooted in the fundamental characteristics of organisms and their environments. Despite the broad nature of

the survey presented in Chapters 3, 4, and 5, it does not constitute an exhaustive presentation of factors

related to evolvabiltiy. However, this survey is wide-ranging enough to begin to appreciate broader patterns

among the factors that contribute to evolvability. This background should also be sufficient to shed light on

strategies to promote evolvability practiced in evolutionary computing.

This chapter aims to leverage overarching theoretical perspective on evolvability from the proximate-

intermediate-ultimate organizational scheme to describe strategies to promote evolvability in an evolutionary

computing setting. Selected efforts to promote evolvability from the evolutionary computing literature will

be reported to illustrate the strategies described.

As we have seen in Chapters 3, 4, and 5, evolvability is a diffuse concept with multiple causality. Recall

that at the most fundamental level, as introduced in Chapter 2, evolvability stems from the availability of

heritable variation that is viable. Recall, also, the two major elements at play in relation to evolvability: an

ability to readily produce novel heritable phenotypic variation and a bias towards viable variation. Chasing

evolvability further down the rabbit hole, the chain of causality rapidly branches out to a diverse set of
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interconnected factors; evolvability stems from a dense web of interactions between many concepts. The

causal factors related to evolvability do not readily lend themselves to being cleanly teased apart. How-

ever, the proximate-intermediate-ultimate conceptual framework does provide some useful insight into the

overall causal framework behind evolvability. We will consider separately the two major components of

an evolutionary algorithm: development (Section 6.1) and selection mapping (Section 6.2). (Development

refers to the genotype-phenotype mapping, and selection refers to the phenotype-fitness mapping; the terms

development and genotype-phenotype mapping and the terms selection and phenotype-fitness mapping will

be employed interchangeably). The lens of the proximate-intermediate-ultimate conceptual framework will

help us distinguish between biologically-inspired and artificial strategies to promote evolvability and better

understand both. We will see that biologically-inspired strategies to promote evolvability act at the ultimate

level of causality while artificial strategies instead act at the proximate level, in relation to the genotype-

phenotype mapping and at the intermediate level, in relation to the phenotype-fitness mapping. At the end

of the discussion in Section 6.3, we will compare biologically-motivated and artificial strategies to promote

evolvability and consider how they reflect broader themes in the field of evolutionary computing.

6.1 Development

6.1.1 Theoretical Analysis: Biologically-Motivated Strategies

Discussing genotype-phenotype mapping, it is important to recognize that the biological development process

itself is largely defined in the genotype and is therefore subject to evolution. Thus, many aspects of the

genotype-phenotype mapping manifest through the evolutionary process. For example, direct and indirect

plasticity are evolved capacities to withstand and exploit environmental influence on the phenotype. In

the context of evolutionary computing, these characteristics of the genotype-phenotype mapping would

not be expected to be present in arbitrarily generated starter individuals. In our proximate-intermediate-

ultimate scheme, these characteristics of the genotype-phenotype mapping would fall under proximate and

intermediate causes of evolvability. In other words, the proximate and intermediate causal factors described

in Chapters 3 and 4 manifest in biological organisms as a result of the evolutionary process, not as a precursor

to it.

In contrast, aspects of the genotype-phenotype mapping that fall under the umbrella of ultimate causal

factors related to evolvability are not encoded in the genotype. They can instead be seen as implicit to

the model through which the genotype is interpreted. The genotype-phenotype map’s indirect nature is

an explicit assumption as is environmental influence on the phenotype. A maximally biologically-plausible

model would explicitly account solely for these ultimate causal factors to promote evolvability. The other

aspects of the genotype-phenotype map would be expected to emerge as a result of the evolutionary process
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under the correct conditions.

6.1.2 Theoretical Analysis: Artificial Strategies

To begin to understand the role proximate factors play in relation to other causal factors, let us begin by

developing an understanding of how these proximate factors fit together as a group. A cursory inspection

reveals that this grouping of proximate factors falls into two major categories. Duplication and divergence,

complexification, weak linkage, and the accumulation of hidden genetic variation are mechanisms that act

on a population over evolutionary time (i.e. over the course of multiple generations). New phenotypic traits

emerge from refinement of existing traits, duplication and modification of existing traits, the establishment

of novel interaction between subsystems through enabling (rather than instructive) signaling, and sensitiza-

tion to previously hidden accumulated genetic variation. Exploratory growth and developmental constraint

are mechanisms that act on the phenotype during the lifetime of an individual (i.e. over the course of the

developmental process). Components of the organism exhibit adaptivity during the developmental process,

reacting to the state of other components and the developmental environment so otherwise independent phe-

notypic traits are synchronized. The nature of the developmental process governs how genotypic information

manifests in the phenotype.

Although the collection of concepts deemed proximate contributors to evolvability are highly diverse,

they might succinctly be described as patterns of how phenotypic features emerge through the develop-

mental and evolutionary processes. All of these concepts ultimately boil down to the genotype-phenotype

mapping, the manner in which phenotypic information is stored in the genome. The intimate intertwining

of the genotype-phenotype mapping and both exploratory growth and developmental constraint, which act

over developmental time, can be readily appreciated. The connection between the proximal traits that act

over evolutionary time and the genotype-phenotype mapping is a bit subtler. All four of these proximate

contributors to evolvability — duplication and divergence, complexification, weak linkage, and hidden ge-

netic variation — are related to the addition of new phenotypic information to the genome. Duplication and

divergence leverages existing information in the genome to jump start phenotypic innovation. Complexifi-

cation is enabled by the ability of the genome to assimilate new information describing a phenotypic trait

in increasing detail. Weak linkage is a phenotypic adaptation — propensity to use enabling over instructive

signaling — that reduces the amount of information that must be added to the genome to establish regula-

tory links between separate systems. Hiding segments of the genome from phenotypic expression allows for

the accumulation of novel genetic information in a population that can then be exposed through sensitizing

mutation. The manner in which phenotypic information is stored in the genotype is inherently related to

the genotype-phenotype mapping, hence the connection between these concepts and that mapping. The

Baldwin Effect sits somewhat apart from other proximate causal factors related to evolvability. Although it
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influences the genotype-phenotype mapping like other proximate causal factors, the Baldwin Effect is also

tied to the phenotype-fitness mapping as it essentially performs local search in phenotypic space for fitness

peaks. For the most part, with this slight exception, proximate causes of evolvability can be understood as

acting on the genotype-phenotype mapping.

As we will see in the next section, manually-designed developmental processes can exploit this relationship

between proximate causes of evolvability and the genotype-phenotype mapping. These proximate causes of

evolvability can be explicitly accounted for in the artificial development process (“scaffolded” into the model).

6.1.3 Examples from Literature

Genetic representation design in evolutionary computing is typically a domain-specific endeavor. The manner

in which a genotype-phenotype mapping is designed depends on the phenotype space it must map to.

However, some design patterns do exist across domains and these are nicely exemplified by work being done

in Evolving Artificial Neural Networks (EANNs). The goal of EANNs are to discover configurations of nodes

and connective weights that cause an artificial neural network to exhibit a desired behavior. Scalability is a

key hurdle for EANNs; evolving large artificial neural networks is difficult. EANNs have yet to rival neither

the scale nor the intricacy of their biological counterparts and it is thought that poor genetic encoding is

responsible for much of this shortcoming [Tonelli and Mouret, 2013].

Perhaps not surprisingly then, researchers have turned to biology to inspire new genetic encoding schemes

for EANNs. On the more literal side of the biological inspiration coin lies Bongard and Pfeifer’s artificial

ontogeny (AO) system. In this system, the phenotype is constructed through successive duplication and

differentiation of a single virtual cell modulated by simulated diffusion of chemical substances, which in turn

stem from simulated genetic regulatory networks [Downing, 2015, p 345]. Mouret et al.’s map-based encoding

occupies a middle ground in terms of literal interpretation of biological inspiration. Styled after models of

the Basal Ganglia developed by neuroscientists, the map-based model jettisons the individual neuron as the

fundamental unit of network composition. Instead, layers each consisting of an arbitrary number of neurons,

which are strung together by several pre-defined regular connection schemes (i.e. one to one or one to all),

are taken as the fundamental unit of network composition [Mouret et al., 2010].

HyperNEAT, a highly influential and ubiquitous encoding in evolutionary computing, lies on the reverse

side of the biological inspiration coin — it exhibits highly abstracted biological inspiration. HyperNEAT is

built off the NEAT encoding scheme developed by Stanley and Miikkulainen [Downing, 2015, p 324]. NEAT

is a direct, variable-length encoding for neural networks that reduces omissions and redundancies introduced

during crossover by tracking historical markers associated with each gene, in essence implementing a rough

approximation of synapsis during meiosis. HyperNEAT repurposes NEAT to encode a Compositional Pattern
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Producing Network (CPPN) instead of encoding a neural network.1 The weight of the connection between

two nodes in the neural network generated by HyperNEAT is determined by the output of the CPPN fed the

coordinates of those two nodes. The CPPN in essence serves as the genotype in the HyperNEAT scheme.

The activation patterns projected onto the substrate occupied by artificial neurons in the HyperNEAT

scheme by the CPPN are analogous to patterns of chemical diffusion that play a key role in directing

embryological development [Downing, 2015, p 339]. In the original HyperNEAT concept, artificial neurons

were arranged in a simple grid pattern. Subsequent efforts have been made to implicitly define neuron

placement based on CPPN output, allowing for the network to grow in numerical size over evolutionary time

[Risi et al., 2010, Risi and Stanley, 2010].

Although great strides have been made in developing representational techniques, allowing effective

EANNs of much larger scale than before, a lot of ground remains to be covered. EANNs still fall short

of the scale exhibited by biological neural networks.

6.2 Selection

6.2.1 Theoretical Analysis: Biologically-Motivated Strategies

Under the proximate-intermediate-ultimate organizational framework, identifying biologically-motivated strate-

gies to promote evolvability by acting on the phenotype-fitness mapping is straightforward. Any ultimate

causal factors related to selection can serve as the basis for such a biologically-motivated strategy. Tempo-

rally varying goals and fitness degeneracy explicitly describe aspects of the fitness function — its fluctuation

over evolutionary time and its tolerance of phenotypic diversity. Although environmental influence on the

phenotype acts on the genotype-phenotype mapping it can also be seen as related to the phenotype-fitness

mapping as it can relay information about the phenotype-fitness mapping — namely, which phenotypic

outcome would be favored in terms of fitness.

6.2.2 Theoretical Analysis: Artificial Strategies

Although ultimate causal factors related to selection provide biologically plausible strategies to promote

evolvability, intermediate causes of evolvability can provide means to promote evolvability that depart from

strict adherence to the biological metaphor. Intermediate causal factors include modularity, canalization,

robustness, individual evolvability, intraindividual degeneracy, and interindividual degeneracy. In nature,

these intermediate contributors to evolvability are also qualities gained by evolving organisms through the

evolutionary process, not built a priori into an evolving system. In concrete terms, this means that these

1A CPPN is a weighted network of nodes, each of which performs a transformation on its inputs to generate an output —
essentially a neural network where nodes may perform transformations other than the logistic equation. The CPPN at its core
is just a mathematical expression that accepts several inputs and generates several outputs.
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traits would be essentially absent in a randomly generated population at generation zero but might develop

as evolution proceeds under the right conditions. Intermediate causal factors tend to be less prone to direct

manual instantiation compared to their proximate cousins because intermediate causal factors are largely not

explicit components of the developmental process. However, that does not mean that intermediate causal

factors are ill-defined or unobservable. Especially in digital organisms, these traits can be directly quantified

(usually in the context of a single individual). Reisinger et al. quantify canalization by measuring the rate at

which random mutation degrades fitness [Reisinger and Miikkulainen, 2007]. A domain-specific metric for

modularity has been developed by [Kashtan and Alon, 2005]. The ability to quantify these traits associated

with intermediate causality allows direct selection for them.2 That is, individuals that exhibit a desirable

trait related to evolvability, such as modularity or intraindividual degeneracy, could be explicitly chosen

to populate the next generation. The hope would be to observe these traits become more prevalent over

evolutionary time.

6.2.3 Examples from Literature

In biological evolution, selection criteria are neither monolithic nor static. Although single-objective, static

selection is perhaps the most intuitive strategy to use in an evolutionary algorithm at first blush, such

a selection scheme constitutes a rather simplistic interpretation of the biological metaphor. A number of

recent efforts have leveraged inspiration from selection in biological evolution to great effect. Researchers

have ventured away from static, objective-based selection by employing temporally varying goals, selection

criteria that change over evolutionary time. This selection paradigm in evolutionary computing, reviewed

in Section 5.2. Inspired by the abundance of niches in biological environments, Ngyuen et al. performed

experiments considering the possibility of evolving towards several objectives at once. They found that,

compared to evolving towards a single objective, defining a large set of fitness criteria and determining

selection based on the maximum fitness score obtained under one of those criteria, yielded better quality

solutions for each objective [Nguyen et al., 2015]. In their computational experiment, Ngyuen et al. observed

objective switching, where offspring are better suited to a niche distinct from that occupied by their parent,

occur at a significant rate. Mengistu et al. have hypothesized that this niche-inspired approach encourages

individual evolvability by rewarding individuals with offspring that are phenotypically variable enough to

jump between objectives [Mengistu et al., 2016].

As suggested in the analysis performed at the open of this section, researchers have also identified several

successful selection strategies that depart from strict adherence to the biological metaphor. Highly notable

among these is novelty search. This selection scheme discards traditional objective-based metrics in favor

2It should be noted that intraindividual degeneracy, which manifests in differences between individuals rather than within a
single individual, is slightly different from the other listed intermediate contributors in this regard. However, selection to directly
promote intraindividual degeneracy might nonetheless be possible by divergent selection to reward novel neutral phenotypic
and/or genotypic variation.
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of selecting for individuals that are the most novel, that are the most distinct from individuals that have

already been encountered during evolutionary search [Lehman and Stanley, 2008]. Although not directly

consistent with the biological metaphor, it has been suggested that such an approach captures aspects of

the open-ended nature of biological evolution in ways that other selection schemes fail to do. This strategy

occupies a gray area between biologically plausibility and artificiality. Surprisingly enough, it has been found

that in certain scenarios jettisoning selection for an objective in favor of searching for novelty (and keeping

track of the best-performing solutions encountered along the way) can actually lead to better performance in

satisfying that objective [Lehman and Stanley, 2008]. Novelty search has been found to promote evolvability:

selecting for novelty rewards individuals that create variable offspring [Lehman and Stanley, 2011].

More recently, Mengistu et al. demonstrated a scheme where individual evolvability is directly selected

for [Mengistu et al., 2016]. This scheme selects on the characteristics of an individual — in this case, the

ability to generate phenotypic variation among offspring). Thus, it exemplifies the avenue to promote

evolvability provided by direct selection for intermediate causes of evolvability. Like novelty search, this

selection scheme ignores objective performance when performing selection. Instead, individuals that create

a set of offspring that exhibit the greatest phenotypic diversity amongst siblings are selected for. Also like

novelty search, the best-performing individuals according to the objective function are simply logged along

the way. Although subtle, it is an important point to that these two objective-bucking strategies are not

random search. Individuals are instead selected for based upon criteria — either individual evolvability or

novelty — that specifically aim to facilitate wide-ranging search. It is in the course of these wide-ranging

journeys through phenotype space that these search strategies encounter solutions that well satisfy the

objective.

6.3 Synthesis

Our analysis of strategies to promote evolvability has been divided between the two major components

of the evolutionary algorithm: the genotype-phenotype mapping (development) and the phenotype-fitness

mapping (selection). The proximate-intermediate-ultimate framework has shed light on strategies targeting

both mappings, in particular how each can be accomplished both inside and outside of strict adherence to

the biological metaphor. Possible strategies to promote evolvability can be summarized as:

• taking a broader view of selection

– more open-ended environments that exhibit fitness degeneracy and temporal fluctuations (ulti-

mate causes of evolvability)

– non-objective-based selection mechanisms (such as selection for intermediate causes of evolvabil-

ity)
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• adopting a more nuanced view of the developmental process

– allowing for a more biologically plausible developmental process that incorporates environmental

influence on the phenotype and allows a high level of genetic control of the developmental process

(relying on ultimate causes of evolvability)

– manually building scaffolding for the developmental process to incorporate aspects of proximate

contributors to evolvability at a feasible computational cost (scaffolding proximate causes of evolv-

ability)

Since the conception of the field of evolutionary algorithm design efforts under each of these banners have

already had transformative effects on the field. Such efforts are reviewed next in Sections 6.1 and 6.2.

At first blush, it very well might seem that these efforts to apply a broader, more nuanced view of evolution

to the evolutionary algorithm amount to abandoning practical applications of the evolutionary algorithm.

After all, these first components of the path forward for evolutionary computing entail moving away from

exclusively selecting for the ability of a digital organism to fulfill a desired function. The second involves

incorporation of more nuanced developmental processes, efforts that might not seem to directly relate to the

ability of a mature phenotype to serve a desired function and instead merely appear to be an extravagant

pretense to biological realism where “the complexity of the model dwarfs that of the task...” [Downing, 2015,

p 354]. However, the exact opposite is the case — these efforts aim to unlock the power of evolutionary

innovation, so that it may be better harnessed for applied ends. Indeed, these ideas have been adopted

in applied scenarios where greater task performance is desired and have yielded it [Cheney et al., 2013,

Mengistu et al., 2016, Reisinger and Miikkulainen, 2007, Lehman and Stanley, 2008]. The central question

that evolutionary algorithms researchers confront seems to be: at what level of abstraction can a biologically-

inspired route to profound and useful innovation via evolution be realized? At the heart of the matter,

evolutionary algorithm researchers are challenged to sort out what biological factors are important to the

evolutionary process. As our analysis with the proximate-intermediate-ultimate framework reveals, strict

adherence to biological plausibility (i.e. ultimate causal factors) is not necessary to promote evolvability. It is

possible to act on the genotype-phenotype mapping by scaffolding proximate causes of evolvability and to act

on the phenotype-fitness mapping by selecting for intermediate causes of evolvability. Such clever adjustments

to the evolutionary model allow for the acquisition of evolvability without undue computational cost of a

naive, exclusively biologically plausible approach. The path forward for evolutionary computing will depend

heavily on continued rigorous experimental work to suss out the constellation of causality behind evolvability

in biological systems and digital models. It is hoped that this experimental work, guided and motivated

by theoretical analysis, will ultimately yield stronger methodological techniques to promote evolvability in

digital systems and, thus, continue to advance the practical utility of evolutionary algorithms in applied

settings.

56



Chapter 7

Conclusion

Having thoroughly scrutinized the theoretical basis of evolvability, we will conclude by using evolvability as a

lens to reflect on the relation between evolutionary biology and evolutionary computing to develop a broader

perspective on the topic. It may not be surprising that evolvability is a topic of active discussion among

elements of the evolutionary biology community [Pigliucci, 2008]. The concept falls under the umbrella of a

broader effort to expand the theoretical framework of evolution called the extended evolutionary synthesis

[Pigliucci, 2007]. Compared to the EA community, however, the concept of evolvability has been slower to

gain traction among evolutionary biologists. As Kirschner and Gerhart, a pair of biologists known for their

theory of facilitated variation, comment,

“Many evolutionary biologists do not see a need to connect somatic adaptability to the generation

of variation, and some see a need to keep them separate. For them, it is sufficient to say that

random mutation is required and that the phenotypic variation arises haphazardly from it as

random damage; the organism’s current phenotype does not matter for the variation produced,

and the output of variation is nearly random [Kirschner and Gerhart, 2005, p 219].”

Perhaps, in part, evolutionary biologists are less predisposed to interest in evolvability because they are not

so directly stymied its absence. Success in attempts to emulate the evolutionary process to generate designs

for sophisticated systems such as artificial neural networks or robotic bodies hinges on the ability of the

evolutionary algorithm to generate viable, heritable variation. This development of this capability has been

a major hurdle in EA research, especially in the field’s early years. The intense and ubiquitous interest in

evolvability among the EA community should therefore come as no surprise.

EAs have yielded interesting and useful results, but have not yet come close to replicating the intri-

cacy or scale of biological systems [Tonelli and Mouret, 2011]. In classical EAs, a directly or trivially in-

directly encoded population evolves against a static fitness function. Fitness gains are typically realized

for a period of several hundred generations before innovation stagnates and the population settles out at

57



an equilibrium. This approach, predicated on a fundamentally accurate but extremely simplistic view of

evolution, yields limited results. The stunted effectiveness of early EAs can be cast as a reflection of

the limitations innate to the theory on which the algorithms are built. EA research provides uniquely

direct and blunt evidence that it is not sufficient to say that “phenotypic variation arises haphazardly”

[Kirschner and Gerhart, 2005, p 219]. EA can lend ammunition to biologists who posit that the ability of

organisms to yield offspring more fit than themselves through “mutation, recombination and development”

is “surprising and... demands an explanation” [Draghi and Wagner, 2008]. As skeptics in the evolutionary

biology community point out, “the best way to elevate the prominence of genuinely interesting phenomena...

is to strengthen the evidence for their importance” [Laland et al., 2014]. The evolutionary computing com-

munity have enjoyed a fruitful thrust to develop research algorithms that incorporate a broader array of

theoretical factors that may influence evolution, such as varying fitness functions and phenotypic plasticity

[Kashtan et al., 2007, Moczek et al., 2011, Downing, 2012]. Perhaps the evolutionary biology community

would find widespread elevation of such theory beyond the status of circumstantial “add-ons to the basic

processes that produce evolutionary change” similarly fruitful [Laland et al., 2014].

At present, it seems likely that evolvability stems from a large and diffuse web of cooperating mechanisms.

The establishment — or rejection — of empirical evidence for causal links between factors such as plasticity or

the developmental process and evolvability must be a key research goal in the field of evolutionary algorithm

design. Such results will directly support efforts to refine the evolutionary algorithm and realize performance

more closely akin to that of its biological counterpart. This line of inquiry raises and addresses questions of

interest to the evolutionary biology community, especially in light of continuing controversy surrounding the

extensions to the evolutionary synthesis. It will help determine which theoretical elaborations are necessary

to account for evolution as observed in biology. It is hoped that further research in this vein — both in

silico and in vivo — and, especially, continued exchange between EA and evolutionary biology researchers

will yield both biological insight and more powerful digital engineering techniques.
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Glossary

fitness Fitness refers to the success of an individual at passing its genetic information to the next genera-

tion. An individual with high fitness creates many offspring while an individual with low fitness does

not. Success at surviving challenges posed by the environment is an important factor in determining

fitness. In evolutionary algorithms, the concept of fitness is abstracted to the fitness function where

an individual is scored based on its aptitude at performing a certain task.. 4

genotype Genotype refers to information that is used to determine the phenotype that is passed from

generation to generation. In biology, a DNA sequence serves as the genotype. Although many different

genotypic encodings are employed in evolutionary algorithms, in evolutionary algorithms the genotype

ultimately boils down to a collection of digital information.. 5

individual Individuals are the object upon which evolution operates; evolution evaluates and selects on

individuals and recombines individuals to form new individuals. In biology, and individual is an

individual organism such as a single tree or a single bird. In evolutionary algorithms, an individual is

abstracted as a candidate solution to a problem.. 4

phenotype Phenotype refers to the characteristics of an individual that interact with its environment to

determine its fitness. In biology, the physical form of an organism (i.e. its body) is the phenotype. In

evolutionary algorithms, the phenotype refers to the characteristics of an individual that are evaluated

during selection.. 4

population A population is a collection of individuals that compete to transmit their genetic information to

the next generation. These individuals are typically highly similar and, in many cases in both biology

and evolutionary algorithms, recombine their genetic information to produce offspring.. 4

recombination Recombination refers to the generation of new genetic material from existing genetic mate-

rial. This can involve combinations of two or more sets of genetic material, as in sexual reproduction,

and/or random perturbation of genetic information (i.e. mutations).. 4
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selection Selection refers to the determination of which individuals will pass genetic material on to the next

generation by creating offspring (and how many offspring they will be able to generate) and which will

not.. 4
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