Fall 11-4-2017

Movement Snacks: A Novel Program for Breaking up Sedentary Time in the Workplace

Daniel Murty SPT
University of Puget Sound School of Physical Therapy

Michael Westbrooks SPT
University of Puget Sound School of Physical Therapy

Kendra Guest SPT
University of Puget Sound School of Physical Therapy

Follow this and additional works at: https://soundideas.pugetsound.edu/ptsymposium

Part of the [Physical Therapy Commons](https://soundideas.pugetsound.edu/ptsymposium)

Recommended Citation

https://soundideas.pugetsound.edu/ptsymposium/26

This Poster is brought to you for free and open access by the Physical Therapy, School of at Sound Ideas. It has been accepted for inclusion in Physical Therapy Research Symposium by an authorized administrator of Sound Ideas. For more information, please contact soundideas@pugetsound.edu.
Movement Snacks: A Novel Program for Breaking up Sedentary Time in the Workplace

Kendra Guest, SPT, Daniel Murty, SPT, and Michael Westbrooks, SPT

Introduction

Sedentary behavior is prevalent in high income nations and associated with the increase in mortality from lifestyle related illness. Both cumulative and continuous time spent sitting in the workplace are independently associated with metabolic health risk. Increasing physical activity alone is not sufficient to reduce the health risks associated with sedentary behavior. The sedentary time has to be reduced. While walking breaks are one option to decrease sedentary time they are too disruptive to workflow to be used with high frequency. Another is to perform exercises with the potential to improve balance, which declines with age and sedentary lifestyles. The purpose of this pilot study was to determine the acceptability of a novel program of diverse multiplanar movements to reduce total and continuous sedentary time at work, and the effectiveness of the program at improving balance.

Methods

Subject recruitment: Subjects were selected from the University of Puget Sound Administrative Staff. Participants who met the inclusion criteria were randomized into the "Movement Snack" (MS) intervention group (3 Male, 1 Female: average age: 40.93), or the control group (C) (5 Male, 13 Female: average age: 42.2)

Inclusion criteria: Employed in an administrative department at the University of Puget Sound and aged 18 years or older.

Exclusion criteria: Marking ‘yes’ to any question on the provided PAR-Q form with the provided additional instructions to questions 4 and 5.

Outcome measures: General Self Efficacy (GSE) scale, Stages of Behavioral Change Mode Questionnaire (SBCCQ), Current Exercise Frequency (CEF), Y-Balance, Modified SFMA. Each of 5 SFMA movements were filmed from the front and side. Outcome measures were repeated and differences between the groups were analyzed using a one-way ANOVA. Movement Snack Group: Participants in the MS group were led by the researchers in a demonstration of all "baseline" and "advanced" exercises involved in the program. (See videos) Subjects were instructed to perform the baseline movements for the initial 2 weeks of the study and were then free to perform the more advanced versions for the final 4 weeks of the intervention period. Participants in the MS group were provided instructional videos to guide them through their "movement snacks" as they progressed through the 6 week study period. Videos were sent to participants' workplace computers with cues to exercise at 30 minute intervals throughout the work day. Participants were instructed to record their daily adherence to the program, as well as the version of movement performed.

For the composite Y-balance score, repeated measures ANOVA revealed a significant time x group interaction (p = 0.032), though between-groups effects were insignificant (p=0.404, power = 0.13). Though experimental subjects were generally comfortable performing the movement snack in their workplace (mean ± 3.93 on a 1-5 Likert scale, SD=1.16), they were less positive about fitting the movement snack into their workday (mean=2.87, SD=0.99), or continuing to use the movement snacks after the study (mean=2.6, SD=1.06). Modified SFMA scores did not indicate significant differences between exercise and control group. Likewise, between group analysis of general self-efficacy and stages for behavioral change were not found to be significant. The average number of movement snacks completed per week was 20. Comments from participants in the experimental group suggest the need for greater individual choice regarding the frequency and duration of the movement snacks.

Discussion

Though the hypothesized improvement in balance and movement quality were not proven, inadequate statistical power and adherence were limiting factors. Information gathered from the participants will be useful in designing a program of breaks that is less disruptive to workflow and easier to adhere to. A common sentiment was that 2 minute breaks every half hour was too difficult to adhere to with a break every hour being more manageable. There is currently no available literature detailing how long a break in sedentary time needs to be in order to confer benefit. However, there is some evidence to support higher frequency shorter duration (less than 2 min) standing breaks as having a greater energy expenditure over the same time frame, than a longer 15 minute standing break. With this in mind very short duration breaks every half hour (standing, doing a single purposeful movement, then sitting), integrated with longer movement breaks every hour should be explored. It is also likely the movement snacks were too general and more targeted movements should be chosen on an individual basis if improved balance is a desired outcome.