Symmetry of Resting Tone, Alignment, and Strength in the Pelvic Region

Scott Shelton
University of Puget Sound

Grant Kinnee
University of Puget Sound

Robert Boyles
University of Puget Sound

Rebecca Fowler

Follow this and additional works at: https://soundideas.pugetsound.edu/ptsymposium

Part of the [Physical Therapy Commons](https://soundideas.pugetsound.edu/ptsymposium)

Recommended Citation

Shelton, Scott; Kinnee, Grant; Boyles, Robert; and Fowler, Rebecca, "Symmetry of Resting Tone, Alignment, and Strength in the Pelvic Region" (2018). *Physical Therapy Research Symposium*. 42.

https://soundideas.pugetsound.edu/ptsymposium/42

This Poster is brought to you for free and open access by the Physical Therapy, School of at Sound Ideas. It has been accepted for inclusion in Physical Therapy Research Symposium by an authorized administrator of Sound Ideas. For more information, please contact soundideas@pugetsound.edu.
Authors: Robert Boyles, PT, DSc, OCS, FAAOMPT; Rebecca Fowler, PT, DPT; Grant Kinnee, SPT; Scott Shelton, SPT

Title: Symmetry of Resting Tone, Alignment, and Strength in the Pelvic Region

Objective: To establish baseline measurements of pelvic alignment, hip girdle tone, and muscle strength across the sacroiliac (SI) joint.

Background: Resting tone contributes substantially to postural alignment and stability of the spine. Muscles attached to the axial skeleton, specifically muscles crossing the SI joint such as the gluteal muscles and latissimus dorsi, could contribute to pain and dysfunction if significant differences in side-to-side resting tone exist. While studies have observed side-to-side differences in resting tone of the biceps brachii, no current studies have assessed resting tone differences across the SI joint.

Methods and Measures: Data on resting tone, pelvic asymmetry, and strength were collected using the MyotonPRO myometer, PALM palpation meter, and a strength dynamometer respectively from 30 asymptomatic.

Results: Normative data were collected for strength of the iliopsoas, rectus femoris, latissimus dorsi, gluteus maximus, gluteus medius, hamstrings, and hip adductors. The MyotonPRO tested for bilateral tone, elasticity, creep, stiffness, and relaxation of the same muscles. Measures of pelvic alignment for tilt (ranging from 2° to 17° of anteriorly) were collected as well as symmetry of PSIS, ASIS, and iliac crest height (ranging -3° to 3° of difference).

Conclusions: Side-to-side differences in resting tone, elasticity, creep, stiffness, relaxation, strength, and pelvic symmetry were noted in asymptomatic participants for SI and low back pain. This data provides information to be used in future studies for: determining correlation among tone, alignment, strength, and dysfunction; identifying impairments associated with dysfunction and response to interventions; and guiding impairment-based treatment options.