Head-Shake Sensory Organization Test Performance in Concussed Military Service Members.

Brandon Roadman
University of Puget Sound

Daniel Trapp
University of Puget Sound

Dr. Holly Roberts PT, DPT, GCS, NCS
The University of Puget Sound School of Physical Therapy

Follow this and additional works at: https://soundideas.pugetsound.edu/ptsymposium

Part of the Physical Therapy Commons

Recommended Citation
https://soundideas.pugetsound.edu/ptsymposium/49

This Poster is brought to you for free and open access by the Physical Therapy, School of at Sound Ideas. It has been accepted for inclusion in Physical Therapy Research Symposium by an authorized administrator of Sound Ideas. For more information, please contact soundideas@pugetsound.edu.
Introduction

- Service members who sustain a concussion often experience a myriad of physical and cognitive symptoms including dizziness and imbalance.
- Symptoms can persist for more than six months following head injury.
- The Head-Shake Sensory Organization Test (HS-SOT) measures the ability to utilize vestibular inputs for balance while simultaneously moving the head.
- The primary purpose of the study is to quantify how military service members with concussions perform on a dynamic balance task requiring head on body decoupling with and without somatosensory input.

Methods

- 17 Military Service Members with a history of concussion within the last 24 months completed the Dizziness Handicap Inventory (DHI) and Activities-specific Balance Confidence scale (ABC).
- Computerized Dynamic Posturography testing consisted of the Sensory Organization Test (SOT) (See Figure 1) and the Head-Shake (HS-SOT).
- For the HS-SOT, subjects repeated SOT conditions 2 (eyes closed, fixed surface) and 5 (eyes closed, sway-referenced surface) while performing rhythmic head movement in the yaw axis (left to right) at approximately 85 degrees per second at an amplitude of approximately 30 degrees in each direction.
- Separate Mann-Whitney U-test analyses were performed with subjects divided into groups based on concussion history (>3), and DHI score (≥13).

Table 1. Subject Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Total Sample</th>
<th>DHI < 13 (N=7)</th>
<th>DHI ≥ 13 (N=10)</th>
<th>Concussions < 3 (N=11)</th>
<th>Concussions ≥ 3 (N=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Mean)</td>
<td>32.47</td>
<td>32.86</td>
<td>32.20</td>
<td>31.45</td>
<td>34.33</td>
</tr>
<tr>
<td>No of Previous Concussions (Mean)</td>
<td>2.53</td>
<td>2.00</td>
<td>2.90</td>
<td>1.27</td>
<td>4.83</td>
</tr>
<tr>
<td>No of Concussions in Past 2 years (Mean)</td>
<td>1.12</td>
<td>1.14</td>
<td>1.10</td>
<td>1.18</td>
<td>1.00</td>
</tr>
<tr>
<td>No of Headaches per week (Mean)</td>
<td>2.71</td>
<td>3.00</td>
<td>2.50</td>
<td>2.62</td>
<td>2.50</td>
</tr>
</tbody>
</table>

Table 2. Clinical Characteristics

<table>
<thead>
<tr>
<th></th>
<th>DHI Score (Mean)</th>
<th>ABC Score (Mean)</th>
<th>SOT Composite Score (Mean)</th>
<th>HSSOT Condition 2 Equilibrium Score (Mean)</th>
<th>HSSOT Condition 5 Equilibrium Score (Mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Sample</td>
<td>23.53</td>
<td>85.43</td>
<td>71.53</td>
<td>0.98</td>
<td>0.74</td>
</tr>
<tr>
<td>DHI < 13</td>
<td>5.14</td>
<td>98.57</td>
<td>78.43</td>
<td>0.98</td>
<td>0.80</td>
</tr>
<tr>
<td>DHI > 13</td>
<td>36.40</td>
<td>76.24</td>
<td>66.70</td>
<td>0.97</td>
<td>0.68</td>
</tr>
<tr>
<td>Concussions < 3</td>
<td>23.09</td>
<td>82.77</td>
<td>71.00</td>
<td>0.96</td>
<td>0.60*</td>
</tr>
<tr>
<td>Concussions ≥ 3</td>
<td>24.33</td>
<td>90.32</td>
<td>72.50</td>
<td>1.01</td>
<td>1.02*</td>
</tr>
</tbody>
</table>

Clinical Relevance

- SOT composite scores may not be sensitive enough to measure balance deficits following concussion in this population despite evidence of imbalance and dizziness on reliable and valid patient-report measures.
- Further research is needed to determine whether the HS-SOT is a valid performance-based measure to guide clinical decision-making.

Conclusions

- Despite evidence of imbalance and dizziness on validated patient-reported outcome measures, the SOT and HS-SOT did not detect differences in balance performance.
- These results highlight the need to explore objective performance-based measures to quantify post-concussive balance deficits.

References