Effect of Humus and Structural Environmental Factors on Epiphytes in Acer macrophyllum in the Hoh Rainforest

Emma J. Didier

University of Puget Sound

Follow this and additional works at: https://soundideas.pugetsound.edu/summer_research

Part of the Terrestrial and Aquatic Ecology Commons

Recommended Citation
https://soundideas.pugetsound.edu/summer_research/273

This Article is brought to you for free and open access by Sound Ideas. It has been accepted for inclusion in Summer Research by an authorized administrator of Sound Ideas. For more information, please contact soundideas@pugetsound.edu.
Effect of Humus and Structural Environmental Factors on Epiphytes in *Acer macrophyllum* in the Hoh Rainforest

Emma Didier and Carrie Woods

Introduction

- Epiphytes studied include the moss, liverworts, lichens, and ferns that grow on Big leaf maples
- Environmental variation creates microhabitats within a single tree

Research question:
To what extent do branch size, height, canopy cover, tree zone, distance along branch, humus depth, and humus water content affect epiphyte distribution and diversity in Big-Leaf Maples?

Methods

- Climbed 3 Big-Leaf Maples and surveyed 6 tree zones
- Species counted using dot-intercept method (top left)
- Humus samples collected and dried to obtain gravimetric water content (GWC)
- Data analyzed using ANOVA, Kruskal Wallis, and CCA

Results

- Epiphyte Shannon’s Diversity did not vary among zones (p = 0.413)
- No difference in humus water content between zones 3 and 4 (p = 0.477)

Discussion

- Some species are generalists, while others are specialists
- Species composition is non-random, varies by zone, and is driven in part by structural variation within the tree
- Rather than humus driving species variation, the two may influence one another
- Epiphytes are most abundant in the inner and mid crowns (Fig. 3)

Acknowledgements

Thank you to the UPS Biology department and Murdock for funding, to Carrie Woods for guidance, and to Katy Maleta, Kimmy Ortmann, and Jeremy Woods for support in the lab and field.