Summer 2018

Epiphyte Distributions Vary with Structural Heterogeneity in Acer Macrophyllum

Kaela Hamilton
khamilton@pugetsound.edu

Carrie L. Woods
University of Puget Sound, cwoods@pugetsound.edu

Follow this and additional works at: https://soundideas.pugetsound.edu/summer_research
Part of the Biology Commons, and the Ecology and Evolutionary Biology Commons

Recommended Citation
https://soundideas.pugetsound.edu/summer_research/311

This Article is brought to you for free and open access by Sound Ideas. It has been accepted for inclusion in Summer Research by an authorized administrator of Sound Ideas. For more information, please contact soundideas@pugetsound.edu.
Epiphyte distributions vary with structural heterogeneity in *Acer macrophyllum*

Kaela Hamilton* and Carrie Woods, Department of Biology, University of Puget Sound
khamilton@pugetsound.edu

Introduction

- Epiphyte diversity is attributed to microhabitat specialization
- Microhabitats are created by climatic and structural factors
- Previous epiphyte studies on *Acer macrophyllum* surveyed too broadly and didn’t measure structural features
- **Goal:** Survey *Acer macrophyllum* extensively to determine the effect of structural heterogeneity on epiphytes
- Prediction: epiphyte species will be specialized to microhabitats created by distinctive tree structural features

Methods

- *Acer macrophyllum* in Hoh rainforest
- Dot-intercept method using acetate sheets – identify epiphyte species under each random dot
- Noted structural features (broken branch, hole, etc.)
- Trunk: every 1 m around trunk
- Branch: every 1 m along 3 branches for 3 meters
- Analyzed with ANOVA and NMS

Results

- **Prediction:** epiphyte species will be specialized to microhabitats created by distinctive tree structural features

 Species on E side were different from S and W sides; S and W had similar species.

- **Species found on South and West sides represent all species found in zone.**

Discussion

- Species richness varied with structural heterogeneity, indicating that some epiphytes are specialized to distinct structural features which likely generate unique microhabitats
- Tree orientation also had an effect, particularly in the upper trunk and branches
- Species distributions varied among zones, suggesting height-related preferences among mosses
- Since epiphytes are biological indicators of ecosystem health, knowing their normal distributions is beneficial for conservation
- The tree model can be used to show these patterns in diversity using 3-D printing and virtual reality.

Acknowledgements

Thank you to Carrie Woods for the opportunity to participate in your research and access to research materials. Thanks to the Biology Department for funding and use of facilities, and UEC for covering research expenses. Thanks to the ONRC for boarding. Anneli Fogot and Sy Bean, thank you for covering our research with such an amazing article! Special thanks to Russell Kramer for creating the 3-D model of our tree!