Physarum Polycephalum Network Construction

Rei Ishii
Carrie Woods, Adam Smith
Physarum polycephalum

- Acellular slime mold
 - Protist—neither animal, plant, nor fungus

- I study the diploid plasmodial form, visible to human eye
 - One cell—a coenocyte, billions of nuclei

- Genetically similar plasmodia will fuse together
 - Doesn’t mind being divided into pieces

- Amoeboid movement over surfaces
 - leaves behind a network of tubes connecting food sources
When oats are placed in the locations of major cities in the Tokyo area, *Physarum* creates a similar network to the real Tokyo train system (Tero et al. 2010)

Physarum creates networks that can be expressed in graph theory

- Graph theory can model a lot of things
 - Transportation systems
 - Neural networks
 - Biological pathways
 - Disease transmission
 - Social media friendships
 - The internet

When oats are placed in the locations of major cities in the Tokyo area, *Physarum* creates a similar network to the real Tokyo train system (Tero et al. 2010)
Graphs model networks, are made up of:

Nodes (or vertices)
- Represents a type of object
- Food sources are nodes

Edges
- Connect nodes
- Represent relationships between nodes
- Plasmodial tubes between food sources are edges

Edges can have “edge weights”, which is a metric of the relationship between the two nodes the edge connects.

Edge weight is length of the plasmodial tubes.
Optimal Foraging Theory

Organisms should forage in a way to maximize energy and minimize cost.

It is relatively easy to design a transport network with high efficiency and low cost (minimum spanning tree—connect the dots with the shortest lines possible)... but these networks are very fragile if something happens.

A good network might have a third consideration—redundancy—to be able to function despite network stress.
Redundancy increases cost with no immediate benefit to efficiency... but if disturbance occurs, redundancy can prevent a massive drop in efficiency, or network failure

For *Physarum*, disturbance means affecting the plasmodial tube network removal of nodes, edges
Quantifying Physarum Networks

- **Cost**
 - Surface area of Physarum—pixel count

- **Efficiency**
 - Average shortest path in the network
 - Edge weight is length of tube divided by surface area of tube
 - Lower value = more efficient

- **Redundancy**
 - Probability of disconnecting part of the network if one random edge is removed
 - Lower value = more redundant

Cost = 5 + 2 + 1 + 3 = 11

Efficiency = \[\frac{2 + 4 + 5 + 6 + 1 + 7}{(4(4-1))/2} \] = 4.16

Redundancy = 1/4 = 0.25
Methods

Grew plasmodia on an oat media
 • Cut out circular nodes

Built a machine for taking time lapse of ten petri dishes concurrently
 • Arduino microcontroller rotates a spinning plate 36 degrees, then tells the camera to take a photo

After taking a time lapse, used Python to sort each frame into the correct folder for video

Haven’t got to disturbance yet
Next step:

For each frame of the time lapse, apply a mask to filter out everything but Physarum, then count yellow pixels—then plot a chart through time.

Further in the future:

Thesis computer vision to identify nodes (circular food media) and edges (plasmodial tubes)
Acknowledgements

Thank you to my advisors, McCormick funding, the Biology department, and Bob Peaslee!