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�‡ Isotopic data from thermal springs display the same trend predicted for 
rainwater, consistent with a meteoric water source

�‡ Isotopic signatures of most thermal springs lie along the Global Meteoric 
Water Line (GMWL)

�‡ Position of data along GMWL varied depending on altitude of recharge 
area: lower along GMWL = higher altitude and vice-versa

�‡ Bonneville, Baker, Goldmyer, Olympic Complex, and Sol Duc are most 
likely dominantly recharge waters ( = very dilute waters)

�‡ Data for Carson and Ohanapecosh fall off the GMWL, which could be 
indicate that these waters have undergone rock-water interaction and/or 
boiling / condensation in the subsurface

�‡ Relative to their original position:
�¾Shift to the right = rock-water interactions
�¾Positive shift in �/D and �/18O = steam-heating/boiling
�¾Shift to the left = condensation of steam

Background and Objectives

�‡ Northern Cascades: volcanics overlying continental and marine sedimentary rocks, 
granitic rocks, and some metamorphic rocks [Fig. 2]

�‡ Southern Cascades: predominantly andesitic volcanics including lava flows, 
mudflows, and water-lain deposits; Columbia River Group includes basalts

�‡ Olympics: dominantly marine sedimentary rocks including sandstone, shale, 
conglomerate, plus metasediments including slate, and schists [Fig. 2]

General Geology of Three Study Areas

Spring Chemistry and Geothermometry Conceptual Models

Where does the water come from?
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The state of Washington [Fig . 1] contains 98 low temperature (surface temperatures
between ~ 20 - 50 oC) geothermal springs, which are powered by the convective
circulation of groundwater that is heated by the natural heat of the Earth. These
systems operate in a cycle that begins when precipitation percolates downward into
the subsurface and comes in contact with a heat source. Subsequently the heated
water returns to the surface, in most cases, having interacted chemically with rocks in
the reservoir and/or along its ascent path. Surveys done by the USGS between the
1970s �± early 1990s show there is significant chemical variation amongst these
thermal springs. The objective of this research is to investigate the origins of this
chemical diversity, focusing on determining:
1) subsurface water temperatures
2) the extent of equilibration with the aquifer minerals
3) the involvement of meteoric water
4) whether the geologic setting influences the spring chemistry
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�‡ Cascade waters are generally more chemically enriched than Olympic waters and also more chemically heterogeneous [Fig. 3]

�‡ All chemical species, except for SiO2, show a wide range in values amongst all waters [Fig. 3] 
�‡ Thermal springs are noticeably different from cold springs; most thermal springs (in study) are usually Na and Cl dominant while cold 

springs are more representative of groundwater (Ca/Mg-rich and HCO3-rich) [Fig. 4]
�‡ Based on anion abundances (Cl-HCO3-SO4) the thermal springs can be divided into three groups: mature waters (Carson), intermediate 

waters (Bonneville, Baker, Ohanapecosh, Goldmyer), and bicarbonate waters (Olympic complex, Sol Duc) [Fig. 5 ]
�‡ All waters seem to have undergone partial equilibration with their original brine aquifer, and may have mixed, possibly extensively, with 

groundwater and/or re-equilibrated with rocks at multiple depths [Fig. 6]
�‡ Temperatures derived from chalcedony geothermometer for Bonneville and Olympic waters project significantly higher values than other 

geothemometers (K-Mg and Multiple Mineral Equilibration); SiO2 measurement in these spring waters may be erroneous [Fig. 7]
�‡ Multiple Mineral Equilibration (MME) temperature for Baker is much higher than those projected by other geothermometers, which could be 

indicate that Baker is an intermediate-temperature (>150 oC) system; other geothermometers may be more suitable [Fig. 7]

Sampling and Methodology
�‡ Time sensitive parameters (dissolved oxygen, temperature, pH, H2S gas, and Fe2+) 

were measured on site; three acid-washed polyethylene bottles were filled with 
spring water and taken back to lab

�‡ In lab water was filtered and acidified (w/ 2% HNO3) for ICP-OES and ICP-MS 
analysis of cations and trace elements

�‡ Filtered but not acidified bottle water was subjected to ion chromatography (IC) to 
measure anions and Gran titrations to measure alkalinity

�‡ Untreated water was used for O and H isotopic analysis
�‡ Lab locations: ICP-OES: in-house, ICP-MS: UW Tacoma, IC: Pacific Lutheran 

University, Isotopic Analysis: UW Seattle
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�‡ Based on chemical and isotopic data and topography, Washington thermal
springs appear to represent three types of systems:

�‡ Cascade thermal springs are most likely dilute chloride springs located along
outflow zones of volcanic geothermal systems [Fig . 8 and Fig. 9]

�‡ Unlike high-relief volcanic springs (Bonneville, Baker, Goldmyer, Ohanapecosh)
that receive acidic water runoff, low-relief chloride springs (Carson) have very
little to no SO4 because there is not a sufficiently steep slope to encourage
mixing of acidic and chloride waters [Fig . 8 and Fig. 9]

�‡ Olympic thermal springs are most likely part of fault-controlled convection
systems, whose high HCO3 content can be attributed to host sedimentary rocks

�‡ Sulfur (SO4 and H2S) and other volatiles could be coming from hydrothermally
altered lithologies, volcanogenic, or from other mantle sources [Fig . 10]
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